Menu Close

Find-n-so-that-a-n-1-b-n-1-a-n-b-n-may-be-the-arithmetic-mean-between-a-and-b-




Question Number 160058 by Rasheed.Sindhi last updated on 24/Nov/21
Find n so that ((a^(n+1) +b^(n+1) )/(a^n +b^n )) may be  the arithmetic mean between a  and b.
$${Find}\:{n}\:{so}\:{that}\:\frac{{a}^{{n}+\mathrm{1}} +{b}^{{n}+\mathrm{1}} }{{a}^{{n}} +{b}^{{n}} }\:{may}\:{be} \\ $$$${the}\:{arithmetic}\:{mean}\:{between}\:{a} \\ $$$${and}\:{b}. \\ $$
Commented by Tinku Tara last updated on 24/Nov/21
n=0
$${n}=\mathrm{0} \\ $$
Commented by Rasheed.Sindhi last updated on 24/Nov/21
Right sir, process please.
$${Right}\:{sir},\:{process}\:{please}. \\ $$
Answered by Kunal12588 last updated on 24/Nov/21
((a+b)/2)=((a^(n+1) +b^(n+1) )/(a^n +b^n ))  ⇒a^(n+1) +ab^n +a^n b+b^(n+1) =2a^(n+1) +2b^(n+1)   ⇒a^n a−ab^n −a^n b+b^n b=0  ⇒a(a^n −b^n )−b(a^n −b^n )=0  ⇒(a−b)(a^n −b^n )=0  ⇒a=b or a^n =b^n   a^n =b^n ⇒((a/b))^n =1⇒n=0
$$\frac{{a}+{b}}{\mathrm{2}}=\frac{{a}^{{n}+\mathrm{1}} +{b}^{{n}+\mathrm{1}} }{{a}^{{n}} +{b}^{{n}} } \\ $$$$\Rightarrow{a}^{{n}+\mathrm{1}} +{ab}^{{n}} +{a}^{{n}} {b}+{b}^{{n}+\mathrm{1}} =\mathrm{2}{a}^{{n}+\mathrm{1}} +\mathrm{2}{b}^{{n}+\mathrm{1}} \\ $$$$\Rightarrow{a}^{{n}} {a}−{ab}^{{n}} −{a}^{{n}} {b}+{b}^{{n}} {b}=\mathrm{0} \\ $$$$\Rightarrow{a}\left({a}^{{n}} −{b}^{{n}} \right)−{b}\left({a}^{{n}} −{b}^{{n}} \right)=\mathrm{0} \\ $$$$\Rightarrow\left({a}−{b}\right)\left({a}^{{n}} −{b}^{{n}} \right)=\mathrm{0} \\ $$$$\Rightarrow{a}={b}\:{or}\:{a}^{{n}} ={b}^{{n}} \\ $$$${a}^{{n}} ={b}^{{n}} \Rightarrow\left(\frac{{a}}{{b}}\right)^{{n}} =\mathrm{1}\Rightarrow{n}=\mathrm{0} \\ $$
Commented by Rasheed.Sindhi last updated on 24/Nov/21
ThanX sir!
$$\mathcal{T}{han}\mathcal{X}\:{sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *