Menu Close

Find-1-ln-x-x-4-x-2-1-dx-




Question Number 160560 by HongKing last updated on 01/Dec/21
Find:  𝛀 =∫_( 1) ^( ∞)  ((ln(x))/(x^4  + x^2  + 1)) dx = ?
$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:=\underset{\:\mathrm{1}} {\overset{\:\infty} {\int}}\:\frac{\mathrm{ln}\left(\mathrm{x}\right)}{\mathrm{x}^{\mathrm{4}} \:+\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{1}}\:\mathrm{dx}\:=\:? \\ $$
Answered by Ar Brandon last updated on 02/Dec/21
Ξ©=∫_1 ^∞ ((lnx)/(x^4 +x^2 +1))dx=∫_1 ^∞ ((1βˆ’x^2 )/(1βˆ’x^6 ))lnxdx, x=u^(βˆ’1) β‡’dx=βˆ’u^(βˆ’2) du      =βˆ’βˆ«_0 ^1 ((u^4 βˆ’u^2 )/(u^6 βˆ’1))lnudu=(1/(36))∫_0 ^1 ((t^(βˆ’(1/6)) βˆ’t^(βˆ’(3/6)) )/(1βˆ’t))lntdt      =(1/(36))(Οˆβ€²((1/2))βˆ’Οˆβ€²((5/6)))=(1/(36))(Ξ£_(n=0) ^∞ (1/((n+(1/2))^2 ))βˆ’Ξ£_(n=0) ^∞ (1/((n+(5/6))^2 )))
$$\Omega=\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{ln}{x}}{{x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1}}{dx}=\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{1}βˆ’{x}^{\mathrm{2}} }{\mathrm{1}βˆ’{x}^{\mathrm{6}} }\mathrm{ln}{xdx},\:{x}={u}^{βˆ’\mathrm{1}} \Rightarrow{dx}=βˆ’{u}^{βˆ’\mathrm{2}} {du} \\ $$$$\:\:\:\:=βˆ’\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{u}^{\mathrm{4}} βˆ’{u}^{\mathrm{2}} }{{u}^{\mathrm{6}} βˆ’\mathrm{1}}\mathrm{ln}{udu}=\frac{\mathrm{1}}{\mathrm{36}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{βˆ’\frac{\mathrm{1}}{\mathrm{6}}} βˆ’{t}^{βˆ’\frac{\mathrm{3}}{\mathrm{6}}} }{\mathrm{1}βˆ’{t}}\mathrm{ln}{tdt} \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{36}}\left(\psi'\left(\frac{\mathrm{1}}{\mathrm{2}}\right)βˆ’\psi'\left(\frac{\mathrm{5}}{\mathrm{6}}\right)\right)=\frac{\mathrm{1}}{\mathrm{36}}\left(\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }βˆ’\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({n}+\frac{\mathrm{5}}{\mathrm{6}}\right)^{\mathrm{2}} }\right) \\ $$
Commented by HongKing last updated on 02/Dec/21
thank you so much my dear Sir  answer:  (Ο€^2 /(72)) - (1/(36)) ψ^((1))  ((5/6))
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much}\:\mathrm{my}\:\mathrm{dear}\:\boldsymbol{\mathrm{Sir}} \\ $$$$\mathrm{answer}:\:\:\frac{\pi^{\mathrm{2}} }{\mathrm{72}}\:-\:\frac{\mathrm{1}}{\mathrm{36}}\:\psi^{\left(\mathrm{1}\right)} \:\left(\frac{\mathrm{5}}{\mathrm{6}}\right) \\ $$
Commented by Ar Brandon last updated on 02/Dec/21
(1/(36))Ξ£_(n=0) ^∞ (1/((n+(1/2))^2 ))=(1/9)Ξ£_(n=0) ^∞ (1/((2n+1)^2 ))  =(1/9)Γ—(3/4)ΞΆ(2)=(1/9)Γ—(3/4)Γ—(Ο€^2 /6)=(Ο€^2 /(72))
$$\frac{\mathrm{1}}{\mathrm{36}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{9}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{9}}Γ—\frac{\mathrm{3}}{\mathrm{4}}\zeta\left(\mathrm{2}\right)=\frac{\mathrm{1}}{\mathrm{9}}Γ—\frac{\mathrm{3}}{\mathrm{4}}Γ—\frac{\pi^{\mathrm{2}} }{\mathrm{6}}=\frac{\pi^{\mathrm{2}} }{\mathrm{72}} \\ $$
Commented by HongKing last updated on 02/Dec/21
Thank you my dear Sir
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{my}\:\mathrm{dear}\:\boldsymbol{\mathrm{Sir}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *