Menu Close

x-2-x-xy-2-1-3-80-y-2-y-x-2-y-1-3-5-find-x-and-y-




Question Number 95222 by bobhans last updated on 24/May/20
 { ((x^2  + x ((xy^2 ))^(1/(3  ))  = 80 )),((y^2  + y ((x^2 y))^(1/(3  ))  = 5 )) :}  find x and y
$$\begin{cases}{{x}^{\mathrm{2}} \:+\:{x}\:\sqrt[{\mathrm{3}\:\:}]{{xy}^{\mathrm{2}} }\:=\:\mathrm{80}\:}\\{{y}^{\mathrm{2}} \:+\:{y}\:\sqrt[{\mathrm{3}\:\:}]{{x}^{\mathrm{2}} {y}}\:=\:\mathrm{5}\:}\end{cases} \\ $$$${find}\:{x}\:{and}\:{y}\: \\ $$
Answered by john santu last updated on 24/May/20
set (x)^(1/(3  ))  = p & (y)^(1/(3  ))  = q   { ((p^6  + p^4 q^2  = 80)),((q^6  + p^2 q^4  = 5 )) :}   { ((p^4  (p^2 +q^2 ) = 80)),((q^4  (p^2 +q^2 ) = 5 )) :}  (p^4 /q^4 ) = 16 ⇒ p = ± 2q   ⇒16q^4  (4q^2 +q^2 ) = 80  80q^4  = 80 ⇒q = ± 1  so we get p = ± 2    { (((x)^(1/(3  ))  = ± 3 ⇒x = ± 8)),(((y)^(1/(3  ))  = ± 1 ⇒ y = ± 1)) :}  solution {(−8,−1),(8,1) }
$$\mathrm{set}\:\sqrt[{\mathrm{3}\:\:}]{{x}}\:=\:{p}\:\&\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{y}}\:=\:{q} \\ $$$$\begin{cases}{{p}^{\mathrm{6}} \:+\:{p}^{\mathrm{4}} {q}^{\mathrm{2}} \:=\:\mathrm{80}}\\{{q}^{\mathrm{6}} \:+\:{p}^{\mathrm{2}} {q}^{\mathrm{4}} \:=\:\mathrm{5}\:}\end{cases} \\ $$$$\begin{cases}{{p}^{\mathrm{4}} \:\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)\:=\:\mathrm{80}}\\{{q}^{\mathrm{4}} \:\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)\:=\:\mathrm{5}\:}\end{cases} \\ $$$$\frac{{p}^{\mathrm{4}} }{{q}^{\mathrm{4}} }\:=\:\mathrm{16}\:\Rightarrow\:{p}\:=\:\pm\:\mathrm{2}{q}\: \\ $$$$\Rightarrow\mathrm{16}{q}^{\mathrm{4}} \:\left(\mathrm{4}{q}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)\:=\:\mathrm{80} \\ $$$$\mathrm{80}{q}^{\mathrm{4}} \:=\:\mathrm{80}\:\Rightarrow{q}\:=\:\pm\:\mathrm{1} \\ $$$$\mathrm{so}\:\mathrm{we}\:\mathrm{get}\:{p}\:=\:\pm\:\mathrm{2}\: \\ $$$$\begin{cases}{\sqrt[{\mathrm{3}\:\:}]{{x}}\:=\:\pm\:\mathrm{3}\:\Rightarrow{x}\:=\:\pm\:\mathrm{8}}\\{\sqrt[{\mathrm{3}\:\:}]{{y}}\:=\:\pm\:\mathrm{1}\:\Rightarrow\:\mathrm{y}\:=\:\pm\:\mathrm{1}}\end{cases} \\ $$$$\mathrm{solution}\:\left\{\left(−\mathrm{8},−\mathrm{1}\right),\left(\mathrm{8},\mathrm{1}\right)\:\right\} \\ $$
Commented by bobhans last updated on 24/May/20
waww...great
$$\mathrm{waww}…\mathrm{great} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *