Menu Close

Question-160924




Question Number 160924 by amin96 last updated on 09/Dec/21
Commented by amin96 last updated on 09/Dec/21
  green area=?  H orthogonal center
$$ \\ $$green area=?
H orthogonal center
Answered by mr W last updated on 09/Dec/21
Commented by mr W last updated on 09/Dec/21
(y/7)=(x/2)  ⇒y=((7x)/2)  ((x+7)/b)=((y+2)/6)=((((7x)/2)+2)/6)=((7x+4)/(12))  ⇒b=((12(x+7))/(7x+4))  AF×7=by=((12(x+7))/(7x+4))×((7x)/2)  ⇒AF=((6x(x+7))/(7x+4))  BF=(√(2^2 −x^2 ))=(√(4−x^2 ))  ((6x(x+7))/(7x+4))+(√(4−x^2 ))=6  (√(4−x^2 ))=((6(4−x^2 ))/(7x+4))  6(√(4−x^2 ))=7x+4  36(4−x^2 )=49x^2 +16+56x  85x^2 +56x−128=0  x=((−28+108)/(85))=((16)/(17))  b=((12(((16)/(17))+7))/(7×((16)/(17))+4))=9  A_(green) =(1/2)×2×9=9
$$\frac{{y}}{\mathrm{7}}=\frac{{x}}{\mathrm{2}} \\ $$$$\Rightarrow{y}=\frac{\mathrm{7}{x}}{\mathrm{2}} \\ $$$$\frac{{x}+\mathrm{7}}{{b}}=\frac{{y}+\mathrm{2}}{\mathrm{6}}=\frac{\frac{\mathrm{7}{x}}{\mathrm{2}}+\mathrm{2}}{\mathrm{6}}=\frac{\mathrm{7}{x}+\mathrm{4}}{\mathrm{12}} \\ $$$$\Rightarrow{b}=\frac{\mathrm{12}\left({x}+\mathrm{7}\right)}{\mathrm{7}{x}+\mathrm{4}} \\ $$$${AF}×\mathrm{7}={by}=\frac{\mathrm{12}\left({x}+\mathrm{7}\right)}{\mathrm{7}{x}+\mathrm{4}}×\frac{\mathrm{7}{x}}{\mathrm{2}} \\ $$$$\Rightarrow{AF}=\frac{\mathrm{6}{x}\left({x}+\mathrm{7}\right)}{\mathrm{7}{x}+\mathrm{4}} \\ $$$${BF}=\sqrt{\mathrm{2}^{\mathrm{2}} −{x}^{\mathrm{2}} }=\sqrt{\mathrm{4}−{x}^{\mathrm{2}} } \\ $$$$\frac{\mathrm{6}{x}\left({x}+\mathrm{7}\right)}{\mathrm{7}{x}+\mathrm{4}}+\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }=\mathrm{6} \\ $$$$\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }=\frac{\mathrm{6}\left(\mathrm{4}−{x}^{\mathrm{2}} \right)}{\mathrm{7}{x}+\mathrm{4}} \\ $$$$\mathrm{6}\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }=\mathrm{7}{x}+\mathrm{4} \\ $$$$\mathrm{36}\left(\mathrm{4}−{x}^{\mathrm{2}} \right)=\mathrm{49}{x}^{\mathrm{2}} +\mathrm{16}+\mathrm{56}{x} \\ $$$$\mathrm{85}{x}^{\mathrm{2}} +\mathrm{56}{x}−\mathrm{128}=\mathrm{0} \\ $$$${x}=\frac{−\mathrm{28}+\mathrm{108}}{\mathrm{85}}=\frac{\mathrm{16}}{\mathrm{17}} \\ $$$${b}=\frac{\mathrm{12}\left(\frac{\mathrm{16}}{\mathrm{17}}+\mathrm{7}\right)}{\mathrm{7}×\frac{\mathrm{16}}{\mathrm{17}}+\mathrm{4}}=\mathrm{9} \\ $$$${A}_{{green}} =\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{2}×\mathrm{9}=\mathrm{9} \\ $$
Commented by Tawa11 last updated on 09/Dec/21
Great sir.
$$\mathrm{Great}\:\mathrm{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *