Menu Close

solve-y-y-y-




Question Number 68308 by mr W last updated on 08/Sep/19
solve y′′′=y′′y′
$${solve}\:{y}'''={y}''{y}' \\ $$
Answered by mind is power last updated on 08/Sep/19
(y^(′′′) /(y′^′ ))=y′  ⇒ln(∣y′′∣)=y+c  ⇒y^(′′) =ke^y   ⇒y^′ y^(′′) =ky^′ e^y   ⇒(1/2)(y′)^2 =ke^y +c  ⇒(y^′ )^2 =2ke^y +2c  ⇒y^′ =+_− (√((ae^y +b)))  ⇒(dy/( (√(ae^y +b))))=dx  ∫(dy/( (√(ae^y +b))))  let z=(√()ae^y +b)  y=ln(((z^2 −b)/a))  dy=((2z)/(z^2 −b))  ⇒∫(2/(z^2 −b))dz=x+c its easy to find z than y  three condition b=0   b>0 and b<0
$$\frac{{y}^{'''} }{{y}'^{'} }={y}' \\ $$$$\Rightarrow{ln}\left(\mid{y}''\mid\right)={y}+{c} \\ $$$$\Rightarrow{y}^{''} ={ke}^{{y}} \\ $$$$\Rightarrow{y}^{'} {y}^{''} ={ky}^{'} {e}^{{y}} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{2}}\left({y}'\right)^{\mathrm{2}} ={ke}^{{y}} +{c} \\ $$$$\Rightarrow\left({y}^{'} \right)^{\mathrm{2}} =\mathrm{2}{ke}^{{y}} +\mathrm{2}{c} \\ $$$$\Rightarrow{y}^{'} =\underset{−} {+}\sqrt{\left({ae}^{{y}} +{b}\right)} \\ $$$$\Rightarrow\frac{{dy}}{\:\sqrt{{ae}^{{y}} +{b}}}={dx} \\ $$$$\int\frac{{dy}}{\:\sqrt{{ae}^{{y}} +{b}}} \\ $$$$\left.{let}\:{z}=\sqrt{\left(\right.}{ae}^{{y}} +{b}\right) \\ $$$${y}={ln}\left(\frac{{z}^{\mathrm{2}} −{b}}{{a}}\right) \\ $$$${dy}=\frac{\mathrm{2}{z}}{{z}^{\mathrm{2}} −{b}} \\ $$$$\Rightarrow\int\frac{\mathrm{2}}{{z}^{\mathrm{2}} −{b}}{dz}={x}+{c}\:{its}\:{easy}\:{to}\:{find}\:{z}\:{than}\:{y} \\ $$$${three}\:{condition}\:{b}=\mathrm{0}\:\:\:{b}>\mathrm{0}\:{and}\:{b}<\mathrm{0} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *