Menu Close

f-0-0-is-convex-function-for-n-2-an-integer-prove-f-1-f-1-f-2-f-2-f-n-f-n-1-f-1-f-2-f-n-f-1-f-2-f-n-1-n-f-1-f-n-




Question Number 161162 by metamorfose last updated on 13/Dec/21
f :]0,+∞[→]0,+∞[ is convex function  for n≥2 an integer , prove :  (f(1)^(f(1)) f(2)^(f(2)) ...f(n)^(f(n)) )^(1/(f(1)+f(2)+...+f(n))) +(f(1)f(2)...f(n))^(1/n) ≤f(1)+f(n)
$$\left.{f}\::\right]\mathrm{0},+\infty\left[\rightarrow\right]\mathrm{0},+\infty\left[\:{is}\:{convex}\:{function}\right. \\ $$$${for}\:{n}\geqslant\mathrm{2}\:{an}\:{integer}\:,\:{prove}\:: \\ $$$$\left({f}\left(\mathrm{1}\right)^{{f}\left(\mathrm{1}\right)} {f}\left(\mathrm{2}\right)^{{f}\left(\mathrm{2}\right)} …{f}\left({n}\right)^{{f}\left({n}\right)} \right)^{\frac{\mathrm{1}}{{f}\left(\mathrm{1}\right)+{f}\left(\mathrm{2}\right)+…+{f}\left({n}\right)}} +\left({f}\left(\mathrm{1}\right){f}\left(\mathrm{2}\right)…{f}\left({n}\right)\right)^{\frac{\mathrm{1}}{{n}}} \leqslant{f}\left(\mathrm{1}\right)+{f}\left({n}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *