Menu Close

2-arctg-x-arctg-x-2-dx-




Question Number 161178 by amin96 last updated on 13/Dec/21
∫^∞ _2 ((arctg(x))/(arctg((x/2))))dx=???
$$\underset{\mathrm{2}} {\int}^{\infty} \frac{\boldsymbol{{arctg}}\left(\boldsymbol{{x}}\right)}{\boldsymbol{{arctg}}\left(\frac{\boldsymbol{{x}}}{\mathrm{2}}\right)}\boldsymbol{{dx}}=??? \\ $$
Answered by MJS_new last updated on 13/Dec/21
1<((arctan x)/(arctan (x/2)))≤2  ⇒  the integral is +∞
$$\mathrm{1}<\frac{\mathrm{arctan}\:{x}}{\mathrm{arctan}\:\frac{{x}}{\mathrm{2}}}\leqslant\mathrm{2} \\ $$$$\Rightarrow \\ $$$$\mathrm{the}\:\mathrm{integral}\:\mathrm{is}\:+\infty \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *