Question Number 30214 by abdo imad last updated on 18/Feb/18
$${study}\:{the}\:{convergence}\:{of}\:{u}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \:\:\frac{{C}_{{n}} ^{{k}} }{{k}} \\ $$$${for}\:{that}\:{use}\:{H}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}}\:. \\ $$
Commented by prof Abdo imad last updated on 22/Feb/18
$${let}\:{condider}\:\:{p}\left({x}\right)=\:\sum_{{k}=\mathrm{1}} ^{{n}} \left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \frac{{C}_{{n}} ^{{k}} }{{k}}\:{x}^{{k}} \:{we}\:{have} \\ $$$${p}^{'} \left({x}\right)=\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \:{x}^{{k}−\mathrm{1}} \\ $$$$=\frac{−\mathrm{1}}{{x}}\sum_{{k}=\mathrm{1}} ^{{n}} \:\:{C}_{{n}} ^{{k}} \:\left(−\mathrm{1}\right)^{{k}} \:{x}^{{k}} \:=−\frac{\mathrm{1}}{{x}}\left(\sum_{{k}=\mathrm{0}} ^{{n}} \left(−\mathrm{1}\right)^{{k}} {x}^{{k}} \:−\mathrm{1}\right) \\ $$$$=\frac{\mathrm{1}}{{x}}\left(\:\mathrm{1}−\left(\mathrm{1}−{x}\right)^{{n}} \right)=\frac{\mathrm{1}−\left(\mathrm{1}−{x}\right)^{{n}} }{{x}}\:\Rightarrow \\ $$$${p}\left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} \:\:\:\:\frac{\mathrm{1}−\left(\mathrm{1}−{t}\right)^{{n}} }{{t}}{dt}\:+\lambda\:\:{but}\:\lambda={p}\left(\mathrm{0}\right)=\mathrm{0}\Rightarrow \\ $$$${p}\left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} \:\:\frac{\mathrm{1}−\left(\mathrm{1}−{t}\right)^{{n}} }{{t}}{dt}\:\:{and}\:{u}_{{n}} ={p}\left(\mathrm{1}\right)\Rightarrow \\ $$$${u}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\mathrm{1}−\left(\mathrm{1}−{t}\right)^{{n}} }{{t}}{dt}\:= \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\left(\mathrm{1}+\left(\mathrm{1}−{t}\right)\:+\left(\mathrm{1}−{t}\right)^{\mathrm{2}} \:+….\left(\mathrm{1}−{t}\right)^{{n}−\mathrm{1}} \right){dt}\right. \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{{k}} {dt}=\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\mathrm{1}−{t}\right)^{{k}} {dt} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\left[\frac{−\mathrm{1}}{{k}+\mathrm{1}}\left(\mathrm{1}−{t}\right)^{{k}+\mathrm{1}} \right]_{\mathrm{0}} ^{\mathrm{1}} =\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\frac{\mathrm{1}}{{k}+\mathrm{1}}\:=\:{H}_{{n}} \:{but} \\ $$$${H}_{{n}} \:\sim{ln}\left({n}\right)\:{for}\:{n}\rightarrow\infty\:\:\Rightarrow{lim}_{{n}\rightarrow\infty} {u}_{{n}} =+\infty. \\ $$