Menu Close

study-the-convergence-of-u-n-k-1-n-1-k-1-C-n-k-k-for-that-use-H-n-k-1-n-1-k-




Question Number 30214 by abdo imad last updated on 18/Feb/18
study the convergence of u_n = Σ_(k=1) ^n (−1)^(k−1)   (C_n ^k /k)  for that use H_n = Σ_(k=1) ^n  (1/k) .
$${study}\:{the}\:{convergence}\:{of}\:{u}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \:\:\frac{{C}_{{n}} ^{{k}} }{{k}} \\ $$$${for}\:{that}\:{use}\:{H}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}}\:. \\ $$
Commented by prof Abdo imad last updated on 22/Feb/18
let condider  p(x)= Σ_(k=1) ^n (−1)^(k−1) (C_n ^k /k) x^k  we have  p^′ (x)= Σ_(k=1) ^n  C_n ^k  (−1)^(k−1)  x^(k−1)   =((−1)/x)Σ_(k=1) ^n   C_n ^k  (−1)^k  x^k  =−(1/x)(Σ_(k=0) ^n (−1)^k x^k  −1)  =(1/x)( 1−(1−x)^n )=((1−(1−x)^n )/x) ⇒  p(x)= ∫_0 ^x     ((1−(1−t)^n )/t)dt +λ  but λ=p(0)=0⇒  p(x)= ∫_0 ^x   ((1−(1−t)^n )/t)dt  and u_n =p(1)⇒  u_n = ∫_0 ^1    ((1−(1−t)^n )/t)dt =  = ∫_0 ^1  ((1+(1−t) +(1−t)^2  +....(1−t)^(n−1) )dt  =∫_0 ^1 Σ_(k=0) ^(n−1) (1−t)^k dt= Σ_(k=0) ^(n−1)   ∫_0 ^1  (1−t)^k dt  =Σ_(k=0) ^(n−1)  [((−1)/(k+1))(1−t)^(k+1) ]_0 ^1 =Σ_(k=0) ^(n−1)   (1/(k+1)) = H_n  but  H_n  ∼ln(n) for n→∞  ⇒lim_(n→∞) u_n =+∞.
$${let}\:{condider}\:\:{p}\left({x}\right)=\:\sum_{{k}=\mathrm{1}} ^{{n}} \left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \frac{{C}_{{n}} ^{{k}} }{{k}}\:{x}^{{k}} \:{we}\:{have} \\ $$$${p}^{'} \left({x}\right)=\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \:{x}^{{k}−\mathrm{1}} \\ $$$$=\frac{−\mathrm{1}}{{x}}\sum_{{k}=\mathrm{1}} ^{{n}} \:\:{C}_{{n}} ^{{k}} \:\left(−\mathrm{1}\right)^{{k}} \:{x}^{{k}} \:=−\frac{\mathrm{1}}{{x}}\left(\sum_{{k}=\mathrm{0}} ^{{n}} \left(−\mathrm{1}\right)^{{k}} {x}^{{k}} \:−\mathrm{1}\right) \\ $$$$=\frac{\mathrm{1}}{{x}}\left(\:\mathrm{1}−\left(\mathrm{1}−{x}\right)^{{n}} \right)=\frac{\mathrm{1}−\left(\mathrm{1}−{x}\right)^{{n}} }{{x}}\:\Rightarrow \\ $$$${p}\left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} \:\:\:\:\frac{\mathrm{1}−\left(\mathrm{1}−{t}\right)^{{n}} }{{t}}{dt}\:+\lambda\:\:{but}\:\lambda={p}\left(\mathrm{0}\right)=\mathrm{0}\Rightarrow \\ $$$${p}\left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} \:\:\frac{\mathrm{1}−\left(\mathrm{1}−{t}\right)^{{n}} }{{t}}{dt}\:\:{and}\:{u}_{{n}} ={p}\left(\mathrm{1}\right)\Rightarrow \\ $$$${u}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\mathrm{1}−\left(\mathrm{1}−{t}\right)^{{n}} }{{t}}{dt}\:= \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\left(\mathrm{1}+\left(\mathrm{1}−{t}\right)\:+\left(\mathrm{1}−{t}\right)^{\mathrm{2}} \:+….\left(\mathrm{1}−{t}\right)^{{n}−\mathrm{1}} \right){dt}\right. \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{{k}} {dt}=\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\mathrm{1}−{t}\right)^{{k}} {dt} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\left[\frac{−\mathrm{1}}{{k}+\mathrm{1}}\left(\mathrm{1}−{t}\right)^{{k}+\mathrm{1}} \right]_{\mathrm{0}} ^{\mathrm{1}} =\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\frac{\mathrm{1}}{{k}+\mathrm{1}}\:=\:{H}_{{n}} \:{but} \\ $$$${H}_{{n}} \:\sim{ln}\left({n}\right)\:{for}\:{n}\rightarrow\infty\:\:\Rightarrow{lim}_{{n}\rightarrow\infty} {u}_{{n}} =+\infty. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *