Menu Close

we-define-the-bernoulli-polynomial-B-n-by-b-0-1-and-n-N-b-n-n-b-n-1-and-0-1-b-n-t-dt-0-1-find-b-n-1-b-n-0-for-n-2-2-prove-that-b-n-x-1-n-b-n-1-x-n-N-3-calculate-b-0




Question Number 30483 by abdo imad last updated on 22/Feb/18
we define the bernoulli polynomial B_n  by  b_0 =1 and ∀n∈ N^★    b_n ^′ =n b_(n−1)   and  ∫_0 ^1 b_n (t)dt=0  1) find b_n (1)−b_n (0) for n≥2  2)  prove that b_n (x)=(−1)^n b_n (1−x)∀n∈N  3)calculate b_0 , b_1 ,b_2  ,b_3
$${we}\:{define}\:{the}\:{bernoulli}\:{polynomial}\:{B}_{{n}} \:{by} \\ $$$${b}_{\mathrm{0}} =\mathrm{1}\:{and}\:\forall{n}\in\:{N}^{\bigstar} \:\:\:{b}_{{n}} ^{'} ={n}\:{b}_{{n}−\mathrm{1}} \:\:{and}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} {b}_{{n}} \left({t}\right){dt}=\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{b}_{{n}} \left(\mathrm{1}\right)−{b}_{{n}} \left(\mathrm{0}\right)\:{for}\:{n}\geqslant\mathrm{2} \\ $$$$\left.\mathrm{2}\right)\:\:{prove}\:{that}\:{b}_{{n}} \left({x}\right)=\left(−\mathrm{1}\right)^{{n}} {b}_{{n}} \left(\mathrm{1}−{x}\right)\forall{n}\in{N} \\ $$$$\left.\mathrm{3}\right){calculate}\:{b}_{\mathrm{0}} ,\:{b}_{\mathrm{1}} ,{b}_{\mathrm{2}} \:,{b}_{\mathrm{3}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *