Menu Close

lim-x-0-cos-x-1-x-




Question Number 161612 by cortano last updated on 20/Dec/21
  lim_(x→0^+ )  ((cos (√x)))^(1/x)  =?
$$\:\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\sqrt[{{x}}]{\mathrm{cos}\:\sqrt{{x}}}\:=? \\ $$
Answered by Ar Brandon last updated on 20/Dec/21
A=lim_(x→0^+ ) ((cos(√x)))^(1/x) =lim_(x→0^+ ) (cos(√x))^(1/x)   lnA=lim_(x→0^+ ) (1/x)ln(cos(√x))=lim_(x→0^+ ) (1/x)ln(1−(x/2))           =lim_(x→0^+ ) (1/x)(−(x/2))=−(1/2)⇒A=e^(−(1/2)) =(1/( (√e)))
$${A}=\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\sqrt[{{x}}]{\mathrm{cos}\sqrt{{x}}}=\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\left(\mathrm{cos}\sqrt{{x}}\right)^{\frac{\mathrm{1}}{{x}}} \\ $$$$\mathrm{ln}{A}=\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{\mathrm{1}}{{x}}\mathrm{ln}\left(\mathrm{cos}\sqrt{{x}}\right)=\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{\mathrm{1}}{{x}}\mathrm{ln}\left(\mathrm{1}−\frac{{x}}{\mathrm{2}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:=\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{\mathrm{1}}{{x}}\left(−\frac{{x}}{\mathrm{2}}\right)=−\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow{A}={e}^{−\frac{\mathrm{1}}{\mathrm{2}}} =\frac{\mathrm{1}}{\:\sqrt{{e}}} \\ $$
Answered by blackmamba last updated on 20/Dec/21
 lim_(x→0^+ )  ((1−2sin^2 (((√x)/2))))^(1/x)  = e^(lim_(x→0^+ ) (1−2sin^2 (((√x)/2))−1).(1/x))     = e^(lim_(x→0^+ ) (−2sin^2 (((√x)/2))).(1/x))     = e^(lim_(x→0^+ ) (((−2((x/4)))/x))) = e^(−(1/2)) = (1/( (√e)))
$$\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\sqrt[{{x}}]{\mathrm{1}−\mathrm{2sin}\:^{\mathrm{2}} \left(\frac{\sqrt{{x}}}{\mathrm{2}}\right)}\:=\:{e}^{\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\left(\mathrm{1}−\mathrm{2sin}\:^{\mathrm{2}} \left(\frac{\sqrt{{x}}}{\mathrm{2}}\right)−\mathrm{1}\right).\frac{\mathrm{1}}{{x}}} \\ $$$$\:\:=\:{e}^{\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\left(−\mathrm{2sin}\:^{\mathrm{2}} \left(\frac{\sqrt{{x}}}{\mathrm{2}}\right)\right).\frac{\mathrm{1}}{{x}}} \\ $$$$\:\:=\:{e}^{\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\left(\frac{−\mathrm{2}\left(\frac{{x}}{\mathrm{4}}\right)}{{x}}\right)} =\:{e}^{−\frac{\mathrm{1}}{\mathrm{2}}} =\:\frac{\mathrm{1}}{\:\sqrt{{e}}}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *