Menu Close

let-f-z-n-0-a-n-z-n-a-0-1-a-1-3-and-n-2-a-n-3a-n-1-2-a-n-2-find-f-z-for-z-lt-1-z-C-




Question Number 30550 by abdo imad last updated on 23/Feb/18
let f(z)= Σ_(n≥0) a_n z^n    /a_0 =1 ,a_1 =3 and ∀n≥2  a_n =3a_(n−1) −2 a_(n−2)     find f(z) for ∣z∣<1  (z∈C) .
$${let}\:{f}\left({z}\right)=\:\sum_{{n}\geqslant\mathrm{0}} {a}_{{n}} {z}^{{n}} \:\:\:/{a}_{\mathrm{0}} =\mathrm{1}\:,{a}_{\mathrm{1}} =\mathrm{3}\:{and}\:\forall{n}\geqslant\mathrm{2} \\ $$$${a}_{{n}} =\mathrm{3}{a}_{{n}−\mathrm{1}} −\mathrm{2}\:{a}_{{n}−\mathrm{2}} \:\:\:\:{find}\:{f}\left({z}\right)\:{for}\:\mid{z}\mid<\mathrm{1}\:\:\left({z}\in{C}\right)\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *