Menu Close

find-I-n-0-1-lnx-n-dx-with-n-fromN-




Question Number 30760 by abdo imad last updated on 25/Feb/18
find  I_n = ∫_0 ^1  (lnx)^n  dx  with n fromN
$${find}\:\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left({lnx}\right)^{{n}} \:{dx}\:\:{with}\:{n}\:{fromN} \\ $$
Commented by abdo imad last updated on 27/Feb/18
the ch. lnx=−t give  I_n = −∫_0 ^(+∞)  (−t)^n (−e^(−t) )dt  =(−1)^n  ∫_0 ^∞  t^n e^(−t) dt =(−1)^n  A_(n )  let integrate by parts  A_n =[−t^n e^(−t) ]_0 ^∞  −∫_0 ^∞ −nt^(n−1)  e^(−t) dt =n∫_0 ^∞  t^(n−1)  e^(−t) dt  =nA_(n−1)   ⇒Π_(k=1) ^n  A_k = Π_(k=1) ^n k.Π_(k=1) ^n  A_(k−1)  ⇒  A_1 .A_2 ....A_n =n! A_0  A_1 ....A_(n−1)  ⇒A_n =n! A_0 =n! ⇒  I_n =(−1)^n n!  .
$${the}\:{ch}.\:{lnx}=−{t}\:{give}\:\:{I}_{{n}} =\:−\int_{\mathrm{0}} ^{+\infty} \:\left(−{t}\right)^{{n}} \left(−\boldsymbol{{e}}^{−\boldsymbol{{t}}} \right)\boldsymbol{{dt}} \\ $$$$=\left(−\mathrm{1}\right)^{{n}} \:\int_{\mathrm{0}} ^{\infty} \:{t}^{{n}} {e}^{−{t}} {dt}\:=\left(−\mathrm{1}\right)^{{n}} \:{A}_{{n}\:} \:{let}\:{integrate}\:{by}\:{parts} \\ $$$${A}_{{n}} =\left[−{t}^{{n}} {e}^{−{t}} \right]_{\mathrm{0}} ^{\infty} \:−\int_{\mathrm{0}} ^{\infty} −{nt}^{{n}−\mathrm{1}} \:{e}^{−{t}} {dt}\:={n}\int_{\mathrm{0}} ^{\infty} \:{t}^{{n}−\mathrm{1}} \:{e}^{−{t}} {dt} \\ $$$$={nA}_{{n}−\mathrm{1}} \:\:\Rightarrow\prod_{{k}=\mathrm{1}} ^{{n}} \:{A}_{{k}} =\:\prod_{{k}=\mathrm{1}} ^{{n}} {k}.\prod_{{k}=\mathrm{1}} ^{{n}} \:{A}_{{k}−\mathrm{1}} \:\Rightarrow \\ $$$${A}_{\mathrm{1}} .{A}_{\mathrm{2}} ….{A}_{{n}} ={n}!\:{A}_{\mathrm{0}} \:{A}_{\mathrm{1}} ….{A}_{{n}−\mathrm{1}} \:\Rightarrow{A}_{{n}} ={n}!\:{A}_{\mathrm{0}} ={n}!\:\Rightarrow \\ $$$${I}_{{n}} =\left(−\mathrm{1}\right)^{{n}} {n}!\:\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *