Question Number 30760 by abdo imad last updated on 25/Feb/18
$${find}\:\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left({lnx}\right)^{{n}} \:{dx}\:\:{with}\:{n}\:{fromN} \\ $$
Commented by abdo imad last updated on 27/Feb/18
$${the}\:{ch}.\:{lnx}=−{t}\:{give}\:\:{I}_{{n}} =\:−\int_{\mathrm{0}} ^{+\infty} \:\left(−{t}\right)^{{n}} \left(−\boldsymbol{{e}}^{−\boldsymbol{{t}}} \right)\boldsymbol{{dt}} \\ $$$$=\left(−\mathrm{1}\right)^{{n}} \:\int_{\mathrm{0}} ^{\infty} \:{t}^{{n}} {e}^{−{t}} {dt}\:=\left(−\mathrm{1}\right)^{{n}} \:{A}_{{n}\:} \:{let}\:{integrate}\:{by}\:{parts} \\ $$$${A}_{{n}} =\left[−{t}^{{n}} {e}^{−{t}} \right]_{\mathrm{0}} ^{\infty} \:−\int_{\mathrm{0}} ^{\infty} −{nt}^{{n}−\mathrm{1}} \:{e}^{−{t}} {dt}\:={n}\int_{\mathrm{0}} ^{\infty} \:{t}^{{n}−\mathrm{1}} \:{e}^{−{t}} {dt} \\ $$$$={nA}_{{n}−\mathrm{1}} \:\:\Rightarrow\prod_{{k}=\mathrm{1}} ^{{n}} \:{A}_{{k}} =\:\prod_{{k}=\mathrm{1}} ^{{n}} {k}.\prod_{{k}=\mathrm{1}} ^{{n}} \:{A}_{{k}−\mathrm{1}} \:\Rightarrow \\ $$$${A}_{\mathrm{1}} .{A}_{\mathrm{2}} ….{A}_{{n}} ={n}!\:{A}_{\mathrm{0}} \:{A}_{\mathrm{1}} ….{A}_{{n}−\mathrm{1}} \:\Rightarrow{A}_{{n}} ={n}!\:{A}_{\mathrm{0}} ={n}!\:\Rightarrow \\ $$$${I}_{{n}} =\left(−\mathrm{1}\right)^{{n}} {n}!\:\:. \\ $$