Menu Close

Prove-that-0-xcos-x-sin-x-2-x-6-dx-15-




Question Number 161945 by Ahmed777hamouda last updated on 24/Dec/21
  Prove that ∫_0 ^∞ (((xcos(x)βˆ’sin(x))^2 )/x^6 )dx =(𝛑/(15))
$$\:\:\boldsymbol{{P}\mathrm{rove}}\:\boldsymbol{\mathrm{that}}\:\int_{\mathrm{0}} ^{\infty} \frac{\left(\boldsymbol{{xcos}}\left(\boldsymbol{{x}}\right)βˆ’\boldsymbol{{sin}}\left(\boldsymbol{{x}}\right)\right)^{\mathrm{2}} }{\boldsymbol{{x}}^{\mathrm{6}} }\boldsymbol{{dx}}\:=\frac{\boldsymbol{\pi}}{\mathrm{15}} \\ $$
Answered by Ar Brandon last updated on 24/Dec/21
I=∫_0 ^∞ (((xcosxβˆ’sinx)^2 )/x^6 )dx=∫_0 ^∞ (((cos^2 x)/x^4 )βˆ’((sin2x)/x^5 )+((sin^2 x)/x^6 ))dx     =[βˆ’((cos^2 x)/(3x^3 ))]_0 ^∞ βˆ’(1/3)∫((sin2x)/x^3 )dxβˆ’16∫_0 ^∞ ((sinu)/u^5 )duβˆ’[((sin^2 x)/(5x^5 ))]_0 ^∞ +(1/5)∫_0 ^∞ ((sin2x)/x^5 )dx     =βˆ’(4/3)∫_0 ^∞ ((sint)/t^3 )dtβˆ’16∫_0 ^∞ ((sinu)/u^5 )du+((16)/5)∫_0 ^∞ ((sint)/t^5 )dt     =βˆ’(4/3)βˆ™(Ο€/(2Ξ“(3)sin(((3Ο€)/2))))βˆ’((64)/5)βˆ™(Ο€/(2Ξ“(5)sin(((5Ο€)/2))))=(Ο€/3)βˆ’((4Ο€)/(15))=(Ο€/(15))
$${I}=\int_{\mathrm{0}} ^{\infty} \frac{\left({x}\mathrm{cos}{x}βˆ’\mathrm{sin}{x}\right)^{\mathrm{2}} }{{x}^{\mathrm{6}} }{dx}=\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{cos}^{\mathrm{2}} {x}}{{x}^{\mathrm{4}} }βˆ’\frac{\mathrm{sin2}{x}}{{x}^{\mathrm{5}} }+\frac{\mathrm{sin}^{\mathrm{2}} {x}}{{x}^{\mathrm{6}} }\right){dx} \\ $$$$\:\:\:=\left[βˆ’\frac{\mathrm{cos}^{\mathrm{2}} {x}}{\mathrm{3}{x}^{\mathrm{3}} }\right]_{\mathrm{0}} ^{\infty} βˆ’\frac{\mathrm{1}}{\mathrm{3}}\int\frac{\mathrm{sin2}{x}}{{x}^{\mathrm{3}} }{dx}βˆ’\mathrm{16}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}{u}}{{u}^{\mathrm{5}} }{du}βˆ’\left[\frac{\mathrm{sin}^{\mathrm{2}} {x}}{\mathrm{5}{x}^{\mathrm{5}} }\right]_{\mathrm{0}} ^{\infty} +\frac{\mathrm{1}}{\mathrm{5}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin2}{x}}{{x}^{\mathrm{5}} }{dx} \\ $$$$\:\:\:=βˆ’\frac{\mathrm{4}}{\mathrm{3}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}{t}}{{t}^{\mathrm{3}} }{dt}βˆ’\mathrm{16}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}{u}}{{u}^{\mathrm{5}} }{du}+\frac{\mathrm{16}}{\mathrm{5}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}{t}}{{t}^{\mathrm{5}} }{dt} \\ $$$$\:\:\:=βˆ’\frac{\mathrm{4}}{\mathrm{3}}\centerdot\frac{\pi}{\mathrm{2}\Gamma\left(\mathrm{3}\right)\mathrm{sin}\left(\frac{\mathrm{3}\pi}{\mathrm{2}}\right)}βˆ’\frac{\mathrm{64}}{\mathrm{5}}\centerdot\frac{\pi}{\mathrm{2}\Gamma\left(\mathrm{5}\right)\mathrm{sin}\left(\frac{\mathrm{5}\pi}{\mathrm{2}}\right)}=\frac{\pi}{\mathrm{3}}βˆ’\frac{\mathrm{4}\pi}{\mathrm{15}}=\frac{\pi}{\mathrm{15}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *