Question Number 162073 by mnjuly1970 last updated on 26/Dec/21
$$ \\ $$$$\:\:\:\:{prove}\:{that} \\ $$$$ \\ $$$$\:\Omega\:=\int_{−\infty} ^{\:+\infty} \frac{\:{cos}\:\left({x}\right)}{\left(\mathrm{2}+\:\mathrm{2}{x}\:+{x}^{\:\mathrm{2}} \right)^{\:\mathrm{2}} }\:{dx}\:=\:\frac{\pi}{{e}}\:{cos}\left(\mathrm{1}\right) \\ $$
Answered by mindispower last updated on 26/Dec/21
$$\Omega=\int_{−\infty} ^{\infty} \frac{{cos}\left({x}\right)}{\left(\mathrm{1}+\left(\mathrm{1}+{x}\right)^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$$$\mathrm{1}+{x}={t} \\ $$$$=\int_{−\infty} ^{\infty} \frac{{cos}\left({t}−\mathrm{1}\right)}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt}=\int_{−\infty} ^{\infty} \frac{{cos}\left({t}\right){cos}\left(\mathrm{1}\right)}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt}+{sin}\left(\mathrm{1}\right)\int_{−\infty} ^{\infty} \frac{{sin}\left({t}\right)}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt}_{=\mathrm{0}} \\ $$$$={cos}\left(\mathrm{1}\right)\int_{−\infty} ^{\infty} \frac{{cos}\left({t}\right){dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$${f}\left({a}\right)=\int_{−\infty} ^{\infty} \frac{{cos}\left({t}\right)}{{a}^{\mathrm{2}} +{t}^{\mathrm{2}} }={Re}\int_{−\infty} ^{\infty} \frac{{e}^{{it}} }{{a}^{\mathrm{2}} +{t}^{\mathrm{2}} }={Re}\left(\mathrm{2}{i}\pi.{e}^{−{a}} .\frac{\mathrm{1}}{\mathrm{2}{ia}}\right) \\ $$$$=\frac{\pi}{{a}}{e}^{−{a}} ={f}\left({a}\right) \\ $$$${f}'\left({a}\right)=\int_{−\infty} ^{\infty} \frac{−\mathrm{2}{acos}\left({t}\right)}{\left({a}^{\mathrm{2}} +{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt} \\ $$$${f}'\left(\mathrm{1}\right)=−\mathrm{2}\int_{−\infty} ^{\infty} \frac{{cos}\left({t}\right){dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$${f}'\left({a}\right)=\left(−\frac{\pi}{{a}^{\mathrm{2}} }{e}^{−{a}} −\frac{\pi}{{a}}{e}^{−{a}} \right) \\ $$$$\int_{−\infty} ^{\infty} \frac{{cos}\left({t}\right){dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{2}\pi}{{e}}=\frac{\pi}{{e}} \\ $$$$\int_{−\infty} ^{\infty} \frac{\left.{cost}\right)}{\left(\mathrm{2}+\mathrm{2}{t}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt}={cos}\left(\mathrm{1}\right)\int\frac{{cos}\left({x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}={cos}\left(\mathrm{1}\right)\frac{\pi}{{e}} \\ $$$$ \\ $$
Commented by Tawa11 last updated on 26/Dec/21
$$\mathrm{Great}\:\mathrm{sir} \\ $$
Commented by mnjuly1970 last updated on 26/Dec/21
$$\:\:\:{excellent}\:{solution}\:{sir}\:{power}… \\ $$
Answered by Mathspace last updated on 26/Dec/21
$$\Upsilon=\int_{−\infty} ^{+\infty} \:\frac{{cosx}}{\left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{2}\right)^{\mathrm{2}} }{dx} \\ $$$$\Upsilon={Re}\left(\int_{−\infty} ^{+\infty} \:\frac{{e}^{{ix}} }{\left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{2}\right)^{\mathrm{2}} }{dx}\right) \\ $$$${let}\:{f}\left({z}\right)=\frac{{e}^{{iz}} }{\left({z}^{\mathrm{2}} +\mathrm{2}{z}+\mathrm{2}\right)^{\mathrm{2}} }\:{poles}\:{of}\:{f}? \\ $$$${z}^{\mathrm{2}\:} +\mathrm{2}{z}+\mathrm{2}=\mathrm{0}\rightarrow\Delta^{'} =\mathrm{1}−\mathrm{2}=−\mathrm{1}\:\Rightarrow \\ $$$${z}_{\mathrm{1}} =−\mathrm{1}+{i}\:\:{and}\:{z}_{\mathrm{2}} =−\mathrm{1}−{i} \\ $$$$\int_{{R}} {f}\left({z}\right){dz}\:=\mathrm{2}{i}\pi{Res}\left({f},{z}_{\mathrm{1}} \right) \\ $$$${z}_{\mathrm{1}} {pole}\:{double}\:\Rightarrow \\ $$$${Res}\left({f},{z}_{\mathrm{1}} \right)={lim}_{{z}\rightarrow{z}_{\mathrm{1}} } \:\frac{\mathrm{1}}{\left(\mathrm{2}−\mathrm{1}\right)!}\left\{\left({z}−{z}_{\mathrm{1}} \right)^{\mathrm{2}} {f}\left({z}\right)\right\}^{\left(\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow{z}_{\mathrm{1}} } \:\:\:\left\{\:\frac{{e}^{{iz}} }{\left({z}−{z}_{\mathrm{2}} \right)^{\mathrm{2}} }\right\}^{\left(\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow{z}_{\mathrm{1}} } \:\:\:\frac{{ie}^{{iz}} \left({z}−{z}_{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{2}\left({z}−{z}_{\mathrm{2}} \right){e}^{{iz}} }{\left({z}−{z}_{\mathrm{2}} \right)^{\mathrm{4}} } \\ $$$$={lim}_{{z}\rightarrow{z}_{\mathrm{1}} } \:\:\:\frac{\left\{{i}\left({z}−{z}_{\mathrm{2}} \right)−\mathrm{2}\right\}{e}^{{iz}} }{\left({z}−{z}_{\mathrm{2}} \right)^{\mathrm{3}} } \\ $$$$=\frac{\left\{{i}\left({z}_{\mathrm{1}} −{z}_{\mathrm{2}} \right)−\mathrm{2}\right\}{e}^{{iz}\mathrm{1}} }{\left({z}_{\mathrm{1}} −{z}_{\mathrm{2}} \right)^{\mathrm{3}} } \\ $$$$=\frac{\left\{{i}\left(\mathrm{2}{i}\right)−\mathrm{2}\right\}{e}^{{i}\left(−\mathrm{1}+{i}\right)} }{\left(\mathrm{2}{i}\right)^{\mathrm{3}} } \\ $$$$=\frac{\left\{−\mathrm{2}−\mathrm{2}\right\}{e}^{−\mathrm{1}} \left\{{cos}\left(\mathrm{1}\right)−{isin}\left(\mathrm{1}\right)\right\}}{−\mathrm{8}{i}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}{i}}{e}^{−\mathrm{1}} \left\{{cos}\left(\mathrm{1}\right)−{isin}\left(\mathrm{1}\right)\right\}\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} {f}\left({z}\right){dz}=\frac{\mathrm{2}{i}\pi}{\mathrm{4}{i}}{e}^{−\mathrm{1}} \left\{{cos}\left(\mathrm{1}\right)−{isin}\left(\mathrm{1}\right)\right\} \\ $$$$=\frac{\pi}{\mathrm{2}}{e}^{−\mathrm{1}} \left\{{cos}\left(\mathrm{1}\right)−{isin}\left(\mathrm{1}\right)\right\} \\ $$$${and}\:\Upsilon={Re}\left(…\right) \\ $$$$=\frac{\pi}{\mathrm{2}{e}}{cos}\left(\mathrm{1}\right) \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 26/Dec/21
$${thanks}\:{alot}\:{master} \\ $$
Answered by Ar Brandon last updated on 24/Mar/22
$$\Omega=\int_{−\infty} ^{+\infty} \frac{\mathrm{cos}{x}}{\left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{2}\right)^{\mathrm{2}} }{dx} \\ $$$$\varphi\left({z}\right)=\frac{{e}^{{iz}} }{\left({z}^{\mathrm{2}} +\mathrm{2}{z}+\mathrm{2}\right)^{\mathrm{2}} }\:\:\:\:,\:\:\:\mathrm{Poles}:\:{z}_{\mathrm{1}} =\frac{−\mathrm{2}+\mathrm{2}{i}}{\mathrm{2}}=\sqrt{\mathrm{2}}{e}^{\frac{\mathrm{3}\pi}{\mathrm{4}}{i}} ,\:{z}_{\mathrm{2}} =\sqrt{\mathrm{2}}{e}^{−\frac{\pi}{\mathrm{4}}{i}} \\ $$$$\Omega={Re}\int_{−\infty} ^{+\infty} \varphi\left({z}\right){dz}={Re}\left(\mathrm{2i}\pi{Res}\left(\varphi,\:{z}_{\mathrm{1}} \right)\right) \\ $$$${Res}\:\left(\varphi,\:{z}_{\mathrm{1}} \right)=\underset{{z}\rightarrow{z}_{\mathrm{1}} } {\mathrm{lim}}\frac{\mathrm{d}}{\mathrm{d}{z}}\left\{\left({z}−{z}_{\mathrm{1}} \right)^{\mathrm{2}} \varphi\left({z}\right)\right\}=\underset{{z}\rightarrow{z}_{\mathrm{1}} } {\mathrm{lim}}\frac{\mathrm{d}}{\mathrm{d}{z}}\left\{\frac{{e}^{{iz}} }{\left({z}−{z}_{\mathrm{2}} \right)^{\mathrm{2}} }\right\} \\ $$$$=\underset{{z}\rightarrow{z}_{\mathrm{1}} } {\mathrm{lim}}\left\{\frac{{ie}^{{iz}} \left({z}−{z}_{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{2}{e}^{{iz}} \left({z}−{z}_{\mathrm{2}} \right)}{\left({z}−{z}_{\mathrm{2}} \right)^{\mathrm{4}} }\right\}=\frac{{ie}^{{iz}_{\mathrm{1}} } \left({z}_{\mathrm{1}} −{z}_{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{2}{e}^{{iz}_{\mathrm{1}} } \left({z}_{\mathrm{1}} −{z}_{\mathrm{2}} \right)}{\left({z}_{\mathrm{1}} −{z}_{\mathrm{2}} \right)^{\mathrm{4}} } \\ $$$$=\frac{{ie}^{{i}\left(−\mathrm{1}+{i}\right)} \left(\mathrm{2}{i}\right)^{\mathrm{2}} −\mathrm{2}{e}^{{i}\left(−\mathrm{1}+{i}\right)} \left(\mathrm{2}{i}\right)}{\mathrm{16}}=−\frac{\mathrm{4}{ie}^{−\left(\mathrm{1}+{i}\right)} +\mathrm{4}{ie}^{−\left(\mathrm{1}+{i}\right)} }{\mathrm{16}} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}{e}}×{e}^{\left(\frac{\pi}{\mathrm{2}}−\mathrm{1}\right){i}} =−\frac{\mathrm{1}}{\mathrm{2}{e}}\left(\mathrm{sin}\left(\mathrm{1}\right)+{i}\mathrm{cos}\left(\mathrm{1}\right)\right) \\ $$$$\Rightarrow{Re}\left(\mathrm{2}{i}\pi{Res}\left(\varphi,\:{z}_{\mathrm{1}} \right)=\frac{\pi}{{e}}\mathrm{cos}\left(\mathrm{1}\right)\right. \\ $$$$\Rightarrow\begin{array}{|c|}{\int_{−\infty} ^{+\infty} \frac{\mathrm{cos}{x}}{\left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{2}\right)^{\mathrm{2}} }{dx}=\frac{\pi}{{e}}\mathrm{cos}\left(\mathrm{1}\right)}\\\hline\end{array} \\ $$