Menu Close

cos-x-1-cos-x-2-dx-




Question Number 162112 by amin96 last updated on 26/Dec/21
∫(( cos(x))/((1−cos(x))^2 ))dx=?
$$\int\frac{\:\boldsymbol{{cos}}\left(\boldsymbol{{x}}\right)}{\left(\mathrm{1}−\boldsymbol{{cos}}\left(\boldsymbol{{x}}\right)\right)^{\mathrm{2}} }\boldsymbol{{dx}}=? \\ $$
Answered by Ar Brandon last updated on 26/Dec/21
I=∫((cosx)/((1−cosx)^2 ))dx=∫((cos^2 (x/2)−sin^2 (x/2))/(4sin^4 (x/2)))dx     =(1/4)∫cot^2 (x/2)cosec^2 (x/2)dx−(1/4)∫cosec^2 (x/2)dx     =(1/2)cot(x/2)−(1/6)cot^3 (x/2)+C
$${I}=\int\frac{\mathrm{cos}{x}}{\left(\mathrm{1}−\mathrm{cos}{x}\right)^{\mathrm{2}} }{dx}=\int\frac{\mathrm{cos}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}−\mathrm{sin}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}{\mathrm{4sin}^{\mathrm{4}} \frac{{x}}{\mathrm{2}}}{dx} \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{4}}\int\mathrm{cot}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}\mathrm{cosec}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}{dx}−\frac{\mathrm{1}}{\mathrm{4}}\int\mathrm{cosec}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}{dx} \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cot}\frac{{x}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{6}}\mathrm{cot}^{\mathrm{3}} \frac{{x}}{\mathrm{2}}+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *