Menu Close

find-0-pi-dx-1-sin-2-x-




Question Number 31071 by abdo imad last updated on 02/Mar/18
find  ∫_0 ^π     (dx/(1+sin^2 x)) .
$${find}\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{dx}}{\mathrm{1}+{sin}^{\mathrm{2}} {x}}\:. \\ $$
Commented by abdo imad last updated on 03/Mar/18
thanks.
$${thanks}. \\ $$
Commented by abdo imad last updated on 02/Mar/18
let put I=∫_0 ^π  (dx/(1+sin^2 x)) ⇒ I= ∫_0 ^π   (dx/(1+((1−cos(2x))/2)))  = ∫_0 ^π    ((2dx)/(3−cos(2x)))  =_(t=2x)  ∫_0 ^(2π)     (dt/(3−cost)) the ch. e^(it) =z give  I= ∫_(∣z∣=1)    (1/(3 −((z +z^(−1) )/2))) (dz/(iz)) = ∫_(∣z∣=1)   ((2dz)/(iz(6−(z+z^(−1) ))))  = ∫_(∣z∣=1) ((−2idz)/(6z −z^2  −1))= ∫_(∣z∣=1)  ((2idz)/(z^2  −6z+1)) let put  ϕ(z)= ((2i)/(z^2  −6z +1)) .poles of ϕ?  z^2  −6z +1=0 ⇒Δ^′ =(−3)^2  −1=8 ⇒z_1 =3 +2(√2)  z_2 =3−2(√2)    ∣z_1 ∣ −1=3+2(√2) −1=2 +2(√2)  >0(to eliminate  from residus) ∣z_2 ∣ −1=2−2(√2) =2(1−(√(2)))<0 ⇒  ∫_(∣z∣=1) ϕ(z)dz=2iπ Res(ϕ,z_2 ) but  ϕ(z)= ((2i)/((z−z_1 )(z−z_2 ))) ⇒Res(ϕ,z_2 )= ((2i)/(z_2 −z_1 )) = ((2i)/(−4(√2))) =((−i)/(2(√2)))  ∫_(∣z∣=1) ϕ(z)dz=2iπ.((−i)/(2(√2))) = (π/( (√2)))  ⇒ I= (π/( (√2))) .
$${let}\:{put}\:{I}=\int_{\mathrm{0}} ^{\pi} \:\frac{{dx}}{\mathrm{1}+{sin}^{\mathrm{2}} {x}}\:\Rightarrow\:{I}=\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{dx}}{\mathrm{1}+\frac{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}}} \\ $$$$=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{\mathrm{2}{dx}}{\mathrm{3}−{cos}\left(\mathrm{2}{x}\right)}\:\:=_{{t}=\mathrm{2}{x}} \:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\frac{{dt}}{\mathrm{3}−{cost}}\:{the}\:{ch}.\:{e}^{{it}} ={z}\:{give} \\ $$$${I}=\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\frac{\mathrm{1}}{\mathrm{3}\:−\frac{{z}\:+{z}^{−\mathrm{1}} }{\mathrm{2}}}\:\frac{{dz}}{{iz}}\:=\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\frac{\mathrm{2}{dz}}{{iz}\left(\mathrm{6}−\left({z}+{z}^{−\mathrm{1}} \right)\right)} \\ $$$$=\:\int_{\mid{z}\mid=\mathrm{1}} \frac{−\mathrm{2}{idz}}{\mathrm{6}{z}\:−{z}^{\mathrm{2}} \:−\mathrm{1}}=\:\int_{\mid{z}\mid=\mathrm{1}} \:\frac{\mathrm{2}{idz}}{{z}^{\mathrm{2}} \:−\mathrm{6}{z}+\mathrm{1}}\:{let}\:{put} \\ $$$$\varphi\left({z}\right)=\:\frac{\mathrm{2}{i}}{{z}^{\mathrm{2}} \:−\mathrm{6}{z}\:+\mathrm{1}}\:.{poles}\:{of}\:\varphi? \\ $$$${z}^{\mathrm{2}} \:−\mathrm{6}{z}\:+\mathrm{1}=\mathrm{0}\:\Rightarrow\Delta^{'} =\left(−\mathrm{3}\right)^{\mathrm{2}} \:−\mathrm{1}=\mathrm{8}\:\Rightarrow{z}_{\mathrm{1}} =\mathrm{3}\:+\mathrm{2}\sqrt{\mathrm{2}} \\ $$$${z}_{\mathrm{2}} =\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\:\:\:\:\mid{z}_{\mathrm{1}} \mid\:−\mathrm{1}=\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}}\:−\mathrm{1}=\mathrm{2}\:+\mathrm{2}\sqrt{\mathrm{2}}\:\:>\mathrm{0}\left({to}\:{eliminate}\right. \\ $$$$\left.{from}\:{residus}\right)\:\mid{z}_{\mathrm{2}} \mid\:−\mathrm{1}=\mathrm{2}−\mathrm{2}\sqrt{\mathrm{2}}\:=\mathrm{2}\left(\mathrm{1}−\sqrt{\left.\mathrm{2}\right)}<\mathrm{0}\:\Rightarrow\right. \\ $$$$\int_{\mid{z}\mid=\mathrm{1}} \varphi\left({z}\right){dz}=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{z}_{\mathrm{2}} \right)\:{but} \\ $$$$\varphi\left({z}\right)=\:\frac{\mathrm{2}{i}}{\left({z}−{z}_{\mathrm{1}} \right)\left({z}−{z}_{\mathrm{2}} \right)}\:\Rightarrow{Res}\left(\varphi,{z}_{\mathrm{2}} \right)=\:\frac{\mathrm{2}{i}}{{z}_{\mathrm{2}} −{z}_{\mathrm{1}} }\:=\:\frac{\mathrm{2}{i}}{−\mathrm{4}\sqrt{\mathrm{2}}}\:=\frac{−{i}}{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$$\int_{\mid{z}\mid=\mathrm{1}} \varphi\left({z}\right){dz}=\mathrm{2}{i}\pi.\frac{−{i}}{\mathrm{2}\sqrt{\mathrm{2}}}\:=\:\frac{\pi}{\:\sqrt{\mathrm{2}}}\:\:\Rightarrow\:{I}=\:\frac{\pi}{\:\sqrt{\mathrm{2}}}\:. \\ $$$$ \\ $$$$ \\ $$
Commented by Joel578 last updated on 02/Mar/18
Nice solution, Sir
$$\mathrm{Nice}\:\mathrm{solution},\:\mathrm{Sir} \\ $$
Answered by Joel578 last updated on 02/Mar/18
I = ∫_0 ^π  ((cosec^2  x )/((1 + sin^2  x)cosec^2  x)) dx     = ∫_0 ^π  ((cosec^2  x)/(cosec^2  x + 1)) dx     = ∫_0 ^π  ((cosec^2  x)/(cot^2  x + 2)) dx    u = cot x  →  du = −cosec^2  x dx   = −∫ ((cosec^2  x)/(u^2  + 2)) . (du/(cosec^2  x)) = −∫ (du/(u^2  + 2))    u = (√2) tan θ  →  du = (√2) sec^2  θ dθ  I = −(√2)∫ ((sec^2  θ)/(2(tan^2  θ + 1))) dθ      = −((√2)/2) ∫ dθ     = −((√2)/2)θ + C = −((√2)/2)tan^(−1) ((u/( (√2)))) + C     = −((√2)/2)tan^(−1) (((cot x)/( (√2)))) + C    I = [−((√2)/2)tan^(−1) (((cot x)/( (√2))))]_0 ^π      = (−((√2)/2)tan^(−1) (−∞)) − (−((√2)/2)tan^(−1) (∞))     = ((π(√2))/4) + ((π(√2))/4) = ((π(√2))/2)
$${I}\:=\:\int_{\mathrm{0}} ^{\pi} \:\frac{\mathrm{cosec}^{\mathrm{2}} \:{x}\:}{\left(\mathrm{1}\:+\:\mathrm{sin}^{\mathrm{2}} \:{x}\right)\mathrm{cosec}^{\mathrm{2}} \:{x}}\:{dx} \\ $$$$\:\:\:=\:\int_{\mathrm{0}} ^{\pi} \:\frac{\mathrm{cosec}^{\mathrm{2}} \:{x}}{\mathrm{cosec}^{\mathrm{2}} \:{x}\:+\:\mathrm{1}}\:{dx} \\ $$$$\:\:\:=\:\int_{\mathrm{0}} ^{\pi} \:\frac{\mathrm{cosec}^{\mathrm{2}} \:{x}}{\mathrm{cot}^{\mathrm{2}} \:{x}\:+\:\mathrm{2}}\:{dx} \\ $$$$ \\ $$$${u}\:=\:\mathrm{cot}\:{x}\:\:\rightarrow\:\:{du}\:=\:−\mathrm{cosec}^{\mathrm{2}} \:{x}\:{dx} \\ $$$$\:=\:−\int\:\frac{\mathrm{cosec}^{\mathrm{2}} \:{x}}{{u}^{\mathrm{2}} \:+\:\mathrm{2}}\:.\:\frac{{du}}{\mathrm{cosec}^{\mathrm{2}} \:{x}}\:=\:−\int\:\frac{{du}}{{u}^{\mathrm{2}} \:+\:\mathrm{2}} \\ $$$$ \\ $$$${u}\:=\:\sqrt{\mathrm{2}}\:\mathrm{tan}\:\theta\:\:\rightarrow\:\:{du}\:=\:\sqrt{\mathrm{2}}\:\mathrm{sec}^{\mathrm{2}} \:\theta\:{d}\theta \\ $$$${I}\:=\:−\sqrt{\mathrm{2}}\int\:\frac{\mathrm{sec}^{\mathrm{2}} \:\theta}{\mathrm{2}\left(\mathrm{tan}^{\mathrm{2}} \:\theta\:+\:\mathrm{1}\right)}\:{d}\theta\: \\ $$$$\:\:\:=\:−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:\int\:{d}\theta \\ $$$$\:\:\:=\:−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\theta\:+\:{C}\:=\:−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{{u}}{\:\sqrt{\mathrm{2}}}\right)\:+\:{C} \\ $$$$\:\:\:=\:−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{cot}\:{x}}{\:\sqrt{\mathrm{2}}}\right)\:+\:{C} \\ $$$$ \\ $$$${I}\:=\:\left[−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{cot}\:{x}}{\:\sqrt{\mathrm{2}}}\right)\right]_{\mathrm{0}} ^{\pi} \\ $$$$\:\:\:=\:\left(−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \left(−\infty\right)\right)\:−\:\left(−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \left(\infty\right)\right) \\ $$$$\:\:\:=\:\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{4}}\:+\:\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{4}}\:=\:\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *