Question Number 31096 by abdo imad last updated on 02/Mar/18
$${find}\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{dx}}{\left({a}+{bcosx}\right)^{\mathrm{2}} }\:{with}\:{a}>{b}>\mathrm{0}\:{then}\:{give}\:{the} \\ $$$${value}\:{of}\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{dx}}{\left(\mathrm{2}+{cosx}\right)^{\mathrm{2}} } \\ $$
Commented by abdo imad last updated on 04/Mar/18
$${let}\:{introduce}\:{the}\:{function}\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{dx}}{{a}+{bcosx}}\:{we}\:{have} \\ $$$${f}^{'} \left({a}\right)=−\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{dx}}{\left({a}+{bcosx}\right)^{\mathrm{2}} }\:\Rightarrow\int_{\mathrm{0}} ^{\pi} \:\:\frac{{dx}}{\left({a}+{bcosx}\right)^{\mathrm{2}} }=−{f}^{'} \left({a}\right)\:{let} \\ $$$${calculate}\:{f}\left({a}\right)\:{ch}.{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}\:{give} \\ $$$${f}\left({a}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{{a}+{b}\:\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\mathrm{2}{dt}}{{a}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)+{b}\left(\mathrm{1}−{t}^{\mathrm{2}} \right)} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{\mathrm{2}{dt}}{{a}+{b}\:+\left({a}−{b}\right){t}^{\mathrm{2}} }=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{2}{dt}}{\left({a}+{b}\right)\left(\mathrm{1}+\frac{{a}−{b}}{{a}+{b}}{t}^{\mathrm{2}} \right)}\:{then} \\ $$$${we}\:{use}\:{the}\:{ch}.\sqrt{\frac{{a}−{b}}{{a}+{b}}}\:{t}={u}\Rightarrow \\ $$$${f}\left({a}\right)=\:\frac{\mathrm{1}}{{a}+{b}}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{2}}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)}\:\sqrt{\frac{{a}+{b}}{{a}−{b}}}\:{du} \\ $$$$=\:\frac{\mathrm{2}}{\:\sqrt{{a}^{\mathrm{2}} \:−{b}^{\mathrm{2}} }}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} }=\:\frac{\pi}{\mathrm{2}}\:\frac{\mathrm{2}}{\:\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}\:=\:\frac{\pi}{\:\sqrt{{a}^{\mathrm{2}} \:−{b}^{\mathrm{2}} }} \\ $$$${f}\left({a}\right)=\pi\left({a}^{\mathrm{2}} \:−{b}^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \:\Rightarrow{f}^{'} \left({a}\right)=\frac{−\pi}{\mathrm{2}}\left(\mathrm{2}{a}\right)\left({a}^{\mathrm{2}} \:−{b}^{\mathrm{2}} \right)^{−\frac{\mathrm{3}}{\mathrm{2}}} \\ $$$$=\frac{−\pi{a}}{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\sqrt{{a}^{\mathrm{2}} \:−{b}^{\mathrm{2}} }}\:\Rightarrow\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{dx}}{\left({a}+{bcosx}\right)^{\mathrm{2}} }=\:\frac{\pi{a}}{\left({a}^{\mathrm{2}} \:−{b}^{\mathrm{2}} \right)\sqrt{{a}^{\mathrm{2}} \:−{b}^{\mathrm{2}} }} \\ $$$$\left.\mathrm{2}\right)\:{let}\:{take}\:{a}=\mathrm{2}\:{and}\:{b}=\mathrm{1}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{dx}}{\left(\mathrm{2}+{cosx}\right)^{\mathrm{2}} }=\:\:\frac{\mathrm{2}\pi}{\left(\mathrm{2}^{\mathrm{2}} \:−\mathrm{1}^{\mathrm{2}} \right)\sqrt{\mathrm{2}^{\mathrm{2}} \:−\mathrm{1}^{\mathrm{2}} }}\:=\:\frac{\mathrm{2}\pi}{\mathrm{3}\sqrt{\mathrm{3}}}\:. \\ $$