Menu Close

find-0-dx-1-x-2-n-with-n-integr-and-n-1-




Question Number 31296 by abdo imad last updated on 05/Mar/18
find  ∫_0 ^(+∞)  (dx/((1+x^2 )^n ))  with n integr and n≥1 .
$${find}\:\:\int_{\mathrm{0}} ^{+\infty} \:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}} }\:\:{with}\:{n}\:{integr}\:{and}\:{n}\geqslant\mathrm{1}\:. \\ $$
Commented by NECx last updated on 07/Mar/18
thats the greatest lie of the century.
$${thats}\:{the}\:{greatest}\:{lie}\:{of}\:{the}\:{century}. \\ $$
Commented by abdo imad last updated on 06/Mar/18
let put I_n =∫_0 ^∞   (dx/((1+x^2 )^n )) ⇒ I_n =(1/2) ∫_(−∞) ^(+∞)    (dx/((1+x^2 )^n ))   let put ϕ(z)= (1/((1+z^2 )^n )) we have ϕ(z)=  (1/((z−i)^n (z+i)^n )) so  thepoles of f are i and −i (poles with ordre n)  ∫_(−∞) ^(+∞) ϕ(z)dz=2iπ Res(ϕ,i)  but  Res(ϕ,i)=lim_(z→i)  (1/((n−1)!))( (z−i)^n f(z))^((n−1))   =lim_(z→i)   (1/((n−1)!))(   (1/((z+i)^n )))^((n−1))  first let find  ((z+i)^p )^((k))  with k ≤p  (z+i)^p )^((1)) =p(z+i)^(p−1)    ,((z+i)^p )^((2)) =p(p−1)(z+i)^(p−2) ⇒  ((z+i)^p )^((k)) =p(p−1)...(p−k+1)(z+i)^(p−k)  and  for p=−n and k=n−1 weget  ((z+i)^(−n) )^((n−1)) =(−n)(−n−1)....(−n −n+1+1)(z+i)^(−n−n+1)   =(−1)^(n−1) n(n+1)(n+2)....(2n−2)(z+i)^(−2n+1)   Res(ϕ,i)= (1/((n−1)!)) (−1)^(n−1) n(n+1)(n+2)...(2n−2)(2i)^(−2n+1)   =(((−1)^(n−1) )/(2^(2n−1) (n−1)! i^(2n−1) )) n(n+1)(n+2)....(2n−2)  = ((−i)/2^(2n−1) ) (1/((n−1)!))n(n+1)(n+2)...(2n −2)⇒  I_n =(1/2)2iπ ((−i)/2^(2n−1) )(1/((n−1)!))n(n+1)(n+2)...(2n−2)  I_n = (π/2^(2n−1) ) n(n+1)(n+2)....(2n−2)=((π(2n−2)!)/(((n−1)!)^2  2^(2n−1) )) .
$${let}\:{put}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}} }\:\Rightarrow\:{I}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}} }\: \\ $$$${let}\:{put}\:\varphi\left({z}\right)=\:\frac{\mathrm{1}}{\left(\mathrm{1}+{z}^{\mathrm{2}} \right)^{{n}} }\:{we}\:{have}\:\varphi\left({z}\right)=\:\:\frac{\mathrm{1}}{\left({z}−{i}\right)^{{n}} \left({z}+{i}\right)^{{n}} }\:{so} \\ $$$${thepoles}\:{of}\:{f}\:{are}\:{i}\:{and}\:−{i}\:\left({poles}\:{with}\:{ordre}\:{n}\right) \\ $$$$\int_{−\infty} ^{+\infty} \varphi\left({z}\right){dz}=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{i}\right)\:\:{but} \\ $$$${Res}\left(\varphi,{i}\right)={lim}_{{z}\rightarrow{i}} \:\frac{\mathrm{1}}{\left({n}−\mathrm{1}\right)!}\left(\:\left({z}−{i}\right)^{{n}} {f}\left({z}\right)\right)^{\left({n}−\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow{i}} \:\:\frac{\mathrm{1}}{\left({n}−\mathrm{1}\right)!}\left(\:\:\:\frac{\mathrm{1}}{\left({z}+{i}\right)^{{n}} }\right)^{\left({n}−\mathrm{1}\right)} \:{first}\:{let}\:{find} \\ $$$$\left(\left({z}+{i}\right)^{{p}} \right)^{\left({k}\right)} \:{with}\:{k}\:\leqslant{p} \\ $$$$\left.\left({z}+{i}\right)^{{p}} \right)^{\left(\mathrm{1}\right)} ={p}\left({z}+{i}\right)^{{p}−\mathrm{1}} \:\:\:,\left(\left({z}+{i}\right)^{{p}} \right)^{\left(\mathrm{2}\right)} ={p}\left({p}−\mathrm{1}\right)\left({z}+{i}\right)^{{p}−\mathrm{2}} \Rightarrow \\ $$$$\left(\left({z}+{i}\right)^{{p}} \right)^{\left({k}\right)} ={p}\left({p}−\mathrm{1}\right)…\left({p}−{k}+\mathrm{1}\right)\left({z}+{i}\right)^{{p}−{k}} \:{and} \\ $$$${for}\:{p}=−{n}\:{and}\:{k}={n}−\mathrm{1}\:{weget} \\ $$$$\left(\left({z}+{i}\right)^{−{n}} \right)^{\left({n}−\mathrm{1}\right)} =\left(−{n}\right)\left(−{n}−\mathrm{1}\right)….\left(−{n}\:−{n}+\mathrm{1}+\mathrm{1}\right)\left({z}+{i}\right)^{−{n}−{n}+\mathrm{1}} \\ $$$$=\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} {n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)….\left(\mathrm{2}{n}−\mathrm{2}\right)\left({z}+{i}\right)^{−\mathrm{2}{n}+\mathrm{1}} \\ $$$${Res}\left(\varphi,{i}\right)=\:\frac{\mathrm{1}}{\left({n}−\mathrm{1}\right)!}\:\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} {n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)…\left(\mathrm{2}{n}−\mathrm{2}\right)\left(\mathrm{2}{i}\right)^{−\mathrm{2}{n}+\mathrm{1}} \\ $$$$=\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{\mathrm{2}^{\mathrm{2}{n}−\mathrm{1}} \left({n}−\mathrm{1}\right)!\:{i}^{\mathrm{2}{n}−\mathrm{1}} }\:{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)….\left(\mathrm{2}{n}−\mathrm{2}\right) \\ $$$$=\:\frac{−{i}}{\mathrm{2}^{\mathrm{2}{n}−\mathrm{1}} }\:\frac{\mathrm{1}}{\left({n}−\mathrm{1}\right)!}{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)…\left(\mathrm{2}{n}\:−\mathrm{2}\right)\Rightarrow \\ $$$${I}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}\mathrm{2}{i}\pi\:\frac{−{i}}{\mathrm{2}^{\mathrm{2}{n}−\mathrm{1}} }\frac{\mathrm{1}}{\left({n}−\mathrm{1}\right)!}{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)…\left(\mathrm{2}{n}−\mathrm{2}\right) \\ $$$${I}_{{n}} =\:\frac{\pi}{\mathrm{2}^{\mathrm{2}{n}−\mathrm{1}} }\:{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)….\left(\mathrm{2}{n}−\mathrm{2}\right)=\frac{\pi\left(\mathrm{2}{n}−\mathrm{2}\right)!}{\left(\left({n}−\mathrm{1}\right)!\right)^{\mathrm{2}} \:\mathrm{2}^{\mathrm{2}{n}−\mathrm{1}} }\:. \\ $$
Commented by NECx last updated on 07/Mar/18
wow..... Prof Abdo Imad,I′m so  amased by the questions you  solve.Thanks for you help on the  platform.
$${wow}…..\:{Prof}\:{Abdo}\:{Imad},{I}'{m}\:{so} \\ $$$${amased}\:{by}\:{the}\:{questions}\:{you} \\ $$$${solve}.{Thanks}\:{for}\:{you}\:{help}\:{on}\:{the} \\ $$$${platform}. \\ $$
Commented by NECx last updated on 07/Mar/18
If I may ask,which aspect of  integration is this  ?
$${If}\:{I}\:{may}\:{ask},{which}\:{aspect}\:{of} \\ $$$${integration}\:{is}\:{this}\:\:? \\ $$
Commented by NECx last updated on 07/Mar/18
this is because I always notice  that you always apply complex  values to your integrals.
$${this}\:{is}\:{because}\:{I}\:{always}\:{notice} \\ $$$${that}\:{you}\:{always}\:{apply}\:{complex} \\ $$$${values}\:{to}\:{your}\:{integrals}. \\ $$
Commented by prof Abdo imad last updated on 07/Mar/18
its only integration by residus theorem....
$${its}\:{only}\:{integration}\:{by}\:{residus}\:{theorem}…. \\ $$
Commented by prof Abdo imad last updated on 07/Mar/18
I am given all my time to integration because  its contain all comsepts of analysis...
$${I}\:{am}\:{given}\:{all}\:{my}\:{time}\:{to}\:{integration}\:{because} \\ $$$${its}\:{contain}\:{all}\:{comsepts}\:{of}\:{analysis}… \\ $$
Commented by NECx last updated on 07/Mar/18
wow.... i′m most grateful
$${wow}….\:{i}'{m}\:{most}\:{grateful} \\ $$
Commented by NECx last updated on 07/Mar/18
I′ve heard of the theorem : cauchy  residue theorem.It has to do with  comlex analysis.Though its not  in Class XI or XII syllabus.u
$${I}'{ve}\:{heard}\:{of}\:{the}\:{theorem}\::\:{cauchy} \\ $$$${residue}\:{theorem}.{It}\:{has}\:{to}\:{do}\:{with} \\ $$$${comlex}\:{analysis}.{Though}\:{its}\:{not} \\ $$$${in}\:{Class}\:{XI}\:{or}\:{XII}\:{syllabus}.{u} \\ $$
Commented by rahul 19 last updated on 07/Mar/18
so u r also  a prof ?
$${so}\:{u}\:{r}\:{also}\:\:{a}\:{prof}\:? \\ $$
Commented by rahul 19 last updated on 07/Mar/18
then?
$${then}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *