Menu Close

sin-72-sin-42-p-tan-12-




Question Number 68473 by naka3546 last updated on 11/Sep/19
((sin 72°)/(sin 42°))  =  p  tan 12°  =  ?
$$\frac{\mathrm{sin}\:\mathrm{72}°}{\mathrm{sin}\:\mathrm{42}°}\:\:=\:\:{p} \\ $$$$\mathrm{tan}\:\mathrm{12}°\:\:=\:\:? \\ $$
Commented by Kunal12588 last updated on 11/Sep/19
((sin(60°+12°))/(sin(30°+12°)))=p  ⇒((((√3)/2)cos12°+(1/2)sin12°)/((1/2)cos12°+((√3)/2)sin12°))=p  ⇒(((√3)+tan12°)/(1+(√3) tan12°))=p  ⇒tan 12°(1−p(√3))=p−(√3)  ⇒tan 12 °= ((p−(√3))/(1−p(√3)))
$$\frac{{sin}\left(\mathrm{60}°+\mathrm{12}°\right)}{{sin}\left(\mathrm{30}°+\mathrm{12}°\right)}={p} \\ $$$$\Rightarrow\frac{\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{cos}\mathrm{12}°+\frac{\mathrm{1}}{\mathrm{2}}{sin}\mathrm{12}°}{\frac{\mathrm{1}}{\mathrm{2}}{cos}\mathrm{12}°+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{sin}\mathrm{12}°}={p} \\ $$$$\Rightarrow\frac{\sqrt{\mathrm{3}}+{tan}\mathrm{12}°}{\mathrm{1}+\sqrt{\mathrm{3}}\:{tan}\mathrm{12}°}={p} \\ $$$$\Rightarrow{tan}\:\mathrm{12}°\left(\mathrm{1}−{p}\sqrt{\mathrm{3}}\right)={p}−\sqrt{\mathrm{3}} \\ $$$$\Rightarrow{tan}\:\mathrm{12}\:°=\:\frac{{p}−\sqrt{\mathrm{3}}}{\mathrm{1}−{p}\sqrt{\mathrm{3}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *