Menu Close

0-log-x-x-1-x-9-




Question Number 162513 by Lordose last updated on 30/Dec/21
∫_0 ^( ∞) ((log(x))/((x+1)(x+9)))
$$\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{log}\left(\mathrm{x}\right)}{\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{x}+\mathrm{9}\right)} \\ $$
Answered by abdullahoudou last updated on 30/Dec/21
x−>(9/x)
$${x}−>\frac{\mathrm{9}}{{x}} \\ $$
Answered by Lordose last updated on 30/Dec/21
I =^(x=(9/x)) 9∫_0 ^( ∞) ((log(9)−log(x))/(x^2 ((9/x)+1)((9/x)+9)))dx  I = ∫_0 ^( ∞) ((2log(3)−log(x))/((x+9)(x+1)))dx  2I = 2log(3)∫_0 ^( ∞) (1/((x+9)(x+1)))dx  2I = ((log(3))/4)log(((x+1)/(x+9)))∣_0 ^∞   I = ((log^2 (3))/4)
$$\mathrm{I}\:\overset{\mathrm{x}=\frac{\mathrm{9}}{\mathrm{x}}} {=}\mathrm{9}\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{log}\left(\mathrm{9}\right)−\mathrm{log}\left(\mathrm{x}\right)}{\mathrm{x}^{\mathrm{2}} \left(\frac{\mathrm{9}}{\mathrm{x}}+\mathrm{1}\right)\left(\frac{\mathrm{9}}{\mathrm{x}}+\mathrm{9}\right)}\mathrm{dx} \\ $$$$\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{2log}\left(\mathrm{3}\right)−\mathrm{log}\left(\mathrm{x}\right)}{\left(\mathrm{x}+\mathrm{9}\right)\left(\mathrm{x}+\mathrm{1}\right)}\mathrm{dx} \\ $$$$\mathrm{2I}\:=\:\mathrm{2log}\left(\mathrm{3}\right)\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{1}}{\left(\mathrm{x}+\mathrm{9}\right)\left(\mathrm{x}+\mathrm{1}\right)}\mathrm{dx} \\ $$$$\mathrm{2I}\:=\:\frac{\mathrm{log}\left(\mathrm{3}\right)}{\mathrm{4}}\mathrm{log}\left(\frac{\mathrm{x}+\mathrm{1}}{\mathrm{x}+\mathrm{9}}\right)\mid_{\mathrm{0}} ^{\infty} \\ $$$$\mathrm{I}\:=\:\frac{\mathrm{log}^{\mathrm{2}} \left(\mathrm{3}\right)}{\mathrm{4}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *