Menu Close

let-give-f-x-1-x-n-1-1-x-n-1-x-n-with-x-R-Z-1-prove-the-existence-of-f-x-2-prove-that-f-is-1-periodic-3-prove-that-f-x-2-f-x-1-2-2f-x-




Question Number 31531 by abdo imad last updated on 09/Mar/18
let give f(x)=(1/x) +Σ_(n=1) ^∞  ((1/(x+n)) +(1/(x−n))) with x∈R−Z  1) prove the existence of f(x)  2)prove that f is 1−periodic  3)prove that f((x/2)) +f(((x+1)/2))=2f(x).
$${let}\:{give}\:{f}\left({x}\right)=\frac{\mathrm{1}}{{x}}\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:\left(\frac{\mathrm{1}}{{x}+{n}}\:+\frac{\mathrm{1}}{{x}−{n}}\right)\:{with}\:{x}\in{R}−{Z} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{the}\:{existence}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:{f}\:{is}\:\mathrm{1}−{periodic} \\ $$$$\left.\mathrm{3}\right){prove}\:{that}\:{f}\left(\frac{{x}}{\mathrm{2}}\right)\:+{f}\left(\frac{{x}+\mathrm{1}}{\mathrm{2}}\right)=\mathrm{2}{f}\left({x}\right). \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *