Menu Close

Question-31611




Question Number 31611 by mondodotto@gmail.com last updated on 11/Mar/18
Commented by mondodotto@gmail.com last updated on 11/Mar/18
please help
$$\mathrm{please}\:\mathrm{help} \\ $$
Answered by Rasheed.Sindhi last updated on 11/Mar/18
gof(x)=g( f(x) ) : x∈{1,2,3,4}     gof(1)=g( f(1) )=g(4)=4     gof(2)=g( f(2) )=g(1)=3     gof(3)=g( f(3) )=g(3)=2     gof(4)=g( f(4) )=g(2)=1  fog(x)=f( g(x) )  : x∈{1,2,3,4}     fog(1)=f( g(1) )=f(3)=3     fog(2)=f( g(2) )=f(1)=4     fog(3)=f( g(3) )=f(2)=1     fog(4)=f( g(4) )=f(4)=2
$${g}\mathrm{o}{f}\left({x}\right)={g}\left(\:{f}\left({x}\right)\:\right)\::\:{x}\in\left\{\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4}\right\} \\ $$$$\:\:\:{g}\mathrm{o}{f}\left(\mathrm{1}\right)={g}\left(\:{f}\left(\mathrm{1}\right)\:\right)={g}\left(\mathrm{4}\right)=\mathrm{4} \\ $$$$\:\:\:{g}\mathrm{o}{f}\left(\mathrm{2}\right)={g}\left(\:{f}\left(\mathrm{2}\right)\:\right)={g}\left(\mathrm{1}\right)=\mathrm{3} \\ $$$$\:\:\:{g}\mathrm{o}{f}\left(\mathrm{3}\right)={g}\left(\:{f}\left(\mathrm{3}\right)\:\right)={g}\left(\mathrm{3}\right)=\mathrm{2} \\ $$$$\:\:\:{g}\mathrm{o}{f}\left(\mathrm{4}\right)={g}\left(\:{f}\left(\mathrm{4}\right)\:\right)={g}\left(\mathrm{2}\right)=\mathrm{1} \\ $$$${f}\mathrm{o}{g}\left({x}\right)={f}\left(\:{g}\left({x}\right)\:\right)\:\::\:{x}\in\left\{\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4}\right\} \\ $$$$\:\:\:{f}\mathrm{o}{g}\left(\mathrm{1}\right)={f}\left(\:{g}\left(\mathrm{1}\right)\:\right)={f}\left(\mathrm{3}\right)=\mathrm{3} \\ $$$$\:\:\:{f}\mathrm{o}{g}\left(\mathrm{2}\right)={f}\left(\:{g}\left(\mathrm{2}\right)\:\right)={f}\left(\mathrm{1}\right)=\mathrm{4} \\ $$$$\:\:\:{f}\mathrm{o}{g}\left(\mathrm{3}\right)={f}\left(\:{g}\left(\mathrm{3}\right)\:\right)={f}\left(\mathrm{2}\right)=\mathrm{1} \\ $$$$\:\:\:{f}\mathrm{o}{g}\left(\mathrm{4}\right)={f}\left(\:{g}\left(\mathrm{4}\right)\:\right)={f}\left(\mathrm{4}\right)=\mathrm{2} \\ $$
Answered by Rasheed.Sindhi last updated on 11/Mar/18
gof   [(1,f,4,g,4),(2,f,1,g,3),(3,f,3,g,2),(4,f,2,g,1) ]  fog   [(1,g,3,f,3),(2,g,1,f,4),(3,g,2,f,1),(4,g,4,f,2) ]
$${g}\mathrm{o}{f} \\ $$$$\begin{bmatrix}{\mathrm{1}}&{{f}}&{\mathrm{4}}&{{g}}&{\mathrm{4}}\\{\mathrm{2}}&{{f}}&{\mathrm{1}}&{{g}}&{\mathrm{3}}\\{\mathrm{3}}&{{f}}&{\mathrm{3}}&{{g}}&{\mathrm{2}}\\{\mathrm{4}}&{{f}}&{\mathrm{2}}&{{g}}&{\mathrm{1}}\end{bmatrix} \\ $$$${f}\mathrm{o}{g} \\ $$$$\begin{bmatrix}{\mathrm{1}}&{{g}}&{\mathrm{3}}&{{f}}&{\mathrm{3}}\\{\mathrm{2}}&{{g}}&{\mathrm{1}}&{{f}}&{\mathrm{4}}\\{\mathrm{3}}&{{g}}&{\mathrm{2}}&{{f}}&{\mathrm{1}}\\{\mathrm{4}}&{{g}}&{\mathrm{4}}&{{f}}&{\mathrm{2}}\end{bmatrix} \\ $$
Commented by mondodotto@gmail.com last updated on 11/Mar/18
please i need more explaination about this method,i don′t understand anything
$$\mathrm{please}\:\mathrm{i}\:\mathrm{need}\:\mathrm{more}\:\mathrm{explaination}\:\mathrm{about}\:\mathrm{this}\:\mathrm{method},\mathrm{i}\:\mathrm{don}'\mathrm{t}\:\mathrm{understand}\:\mathrm{anything} \\ $$
Commented by Rasheed.Sindhi last updated on 12/Mar/18
 [(x,f,(f(x)),g,(g( f(x) ))),(1,f,(  4),g,(       4)),(2,f,(  1),g,(       3)),(3,f,(  3),g,(       2)),(4,f,(  2),g,(       1)) ]  I have added a guide-row for clarification.  Middle column has two roles: it′s output  of  f  and input of  g.  In the question the function is defined  by ordered pairs. First element is input  of the function and the second is output  which is also called image under the function.      (x,y)∈f may also be written x f  y  x : input of  f , y: output of  f   y is also called image of x under f denoted  by f(x).
$$\begin{bmatrix}{{x}}&{{f}}&{{f}\left({x}\right)}&{{g}}&{{g}\left(\:{f}\left({x}\right)\:\right)}\\{\mathrm{1}}&{{f}}&{\:\:\mathrm{4}}&{{g}}&{\:\:\:\:\:\:\:\mathrm{4}}\\{\mathrm{2}}&{{f}}&{\:\:\mathrm{1}}&{{g}}&{\:\:\:\:\:\:\:\mathrm{3}}\\{\mathrm{3}}&{{f}}&{\:\:\mathrm{3}}&{{g}}&{\:\:\:\:\:\:\:\mathrm{2}}\\{\mathrm{4}}&{{f}}&{\:\:\mathrm{2}}&{{g}}&{\:\:\:\:\:\:\:\mathrm{1}}\end{bmatrix} \\ $$$$\mathrm{I}\:\mathrm{have}\:\mathrm{added}\:\mathrm{a}\:\mathrm{guide}-\mathrm{row}\:\mathrm{for}\:\mathrm{clarification}. \\ $$$$\mathrm{Middle}\:\mathrm{column}\:\mathrm{has}\:\mathrm{two}\:\mathrm{roles}:\:\mathrm{it}'\mathrm{s}\:\mathrm{output} \\ $$$$\mathrm{of}\:\:{f}\:\:\mathrm{and}\:\mathrm{input}\:\mathrm{of}\:\:{g}. \\ $$$$\mathrm{In}\:\mathrm{the}\:\mathrm{question}\:\mathrm{the}\:\mathrm{function}\:\mathrm{is}\:\mathrm{defined} \\ $$$$\mathrm{by}\:\mathrm{ordered}\:\mathrm{pairs}.\:\mathrm{First}\:\mathrm{element}\:\mathrm{is}\:\mathrm{input} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{function}\:\mathrm{and}\:\mathrm{the}\:\mathrm{second}\:\mathrm{is}\:\mathrm{output} \\ $$$$\mathrm{which}\:\mathrm{is}\:\mathrm{also}\:\mathrm{called}\:\mathrm{image}\:\mathrm{under}\:\mathrm{the}\:\mathrm{function}. \\ $$$$\:\:\:\:\left(\mathrm{x},\mathrm{y}\right)\in{f}\:\mathrm{may}\:\mathrm{also}\:\mathrm{be}\:\mathrm{written}\:\mathrm{x}\:{f}\:\:\mathrm{y} \\ $$$$\mathrm{x}\::\:\mathrm{input}\:\mathrm{of}\:\:{f}\:,\:\mathrm{y}:\:\mathrm{output}\:\mathrm{of}\:\:{f}\: \\ $$$$\mathrm{y}\:\mathrm{is}\:\mathrm{also}\:\mathrm{called}\:\mathrm{image}\:\mathrm{of}\:\mathrm{x}\:\mathrm{under}\:{f}\:\mathrm{denoted} \\ $$$$\mathrm{by}\:{f}\left(\mathrm{x}\right). \\ $$
Commented by mondodotto@gmail.com last updated on 12/Mar/18
thank you sir
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *