Question Number 134127 by bobhans last updated on 28/Feb/21
$$\:\mathrm{Given}\:\mid\mathrm{f}\left(\mathrm{x}\right)\mid\:=\:\mathrm{x}^{\mathrm{2}} \:\mathrm{for}\:−\mathrm{1}<\mathrm{x}<\mathrm{1} \\ $$$$\mathrm{find}\:\mathrm{f}\:'\left(\mathrm{0}\right). \\ $$
Commented by EDWIN88 last updated on 28/Feb/21
$$\mathrm{does}\:\mathrm{not}\:\mathrm{exist} \\ $$
Commented by EDWIN88 last updated on 28/Feb/21
Commented by MJS_new last updated on 28/Feb/21
$$\mathrm{proper}\:\mathrm{maths}: \\ $$$$\mathrm{let}'\mathrm{s}\:\mathrm{try}\:\mathrm{with} \\ $$$${f}\left({x}\right)=\mathrm{2}{x}\:\forall\:{x}\in\mathbb{R} \\ $$$$\:\:\:\:\:\mathrm{this}\:\mathrm{simply}\:\:\mathrm{means},\:\mathrm{we}'\mathrm{re}\:\mathrm{assigning}\:{x}\:\rightarrow\:\mathrm{2}{x} \\ $$$$\:\:\:\:\:\mathrm{or}\:{y}=\mathrm{2}{x} \\ $$$$\mid{f}\left({x}\right)\mid=\mathrm{2}{x}\:\mathrm{is}\:\mathrm{not}\:\mathrm{a}\:\mathrm{function}\:\mathrm{anymore} \\ $$$$\:\:\:\:\:\mid{y}\mid=\mathrm{2}{x}\:\Leftrightarrow\:{y}=\pm\mathrm{2}{x}\wedge{x}\geqslant\mathrm{0} \\ $$$$\:\:\:\:\:\mathrm{we}\:\mathrm{can}\:\mathrm{split}\:\mathrm{the}\:\mathrm{branches}: \\ $$$$\:\:\:\:\:{y}_{\mathrm{1}} =−\mathrm{2}{x}\wedge{x}\geqslant\mathrm{0} \\ $$$$\:\:\:\:\:{y}_{\mathrm{2}} =\mathrm{2}{x}\wedge{x}\geqslant\mathrm{0} \\ $$$$\:\:\:\:\:\frac{{dy}_{\mathrm{1}} }{{dx}}\:\mathrm{and}\:\frac{{dy}_{\mathrm{2}} }{{dx}}\:\mathrm{both}\:\mathrm{exist}\:\mathrm{but}\:\frac{{dy}}{{dx}}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{exist} \\ $$$$ \\ $$$$\mathrm{now} \\ $$$$\mid{f}\left({x}\right)\mid={x}^{\mathrm{2}} \:\forall\:{x}\in\mathbb{R} \\ $$$$\:\:\:\:\:{y}=\pm{x}^{\mathrm{2}} \wedge{x}^{\mathrm{2}} \geqslant\mathrm{0}\:\mathrm{but}\:{x}^{\mathrm{2}} \geqslant\mathrm{0}\forall{x}\in\mathbb{R} \\ $$$$\:\:\:\:\:\mathrm{again}\:\mathrm{we}\:\mathrm{have}\:\mathrm{2}\:\mathrm{branches}: \\ $$$$\:\:\:\:\:{y}_{\mathrm{1}} =−{x}^{\mathrm{2}} \:\forall\:{x}\in\mathbb{R} \\ $$$$\:\:\:\:\:{y}_{\mathrm{2}} ={x}^{\mathrm{2}} \:\forall\:{x}\in\mathbb{R} \\ $$$$\:\:\:\:\:\mathrm{again}\:\frac{{dy}_{\mathrm{1}} }{{dx}}\:\mathrm{and}\:\frac{{dy}_{\mathrm{2}} }{{dx}}\:\mathrm{exist}\:\mathrm{but}\:\frac{{dy}}{{dx}}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{exist} \\ $$$$\:\:\:\:\:\mathrm{anyway}\:\mathrm{for}\:{x}=\mathrm{0}\:\mathrm{we}\:\mathrm{have}\:\frac{{dy}_{\mathrm{1}} }{{dx}}=\frac{{dy}_{\mathrm{2}} }{{dx}}=\mathrm{0} \\ $$$$\:\:\:\:\:\mathrm{but}\:\mathrm{this}\:\mathrm{still}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{mean}\:\mathrm{that}\:\frac{{dy}}{{dx}}=\mathrm{0}\:\mathrm{for}\:{x}=\mathrm{0} \\ $$
Answered by EDWIN88 last updated on 28/Feb/21
$$\mid\mathrm{y}\:\:\mid\:=\:\mathrm{x}^{\mathrm{2}} \:\Rightarrow\:\sqrt{\mathrm{y}^{\mathrm{2}} }\:=\mathrm{x}^{\mathrm{2}} \:;\:\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{x}^{\mathrm{4}} \\ $$$$\mathrm{2y}\:\mathrm{y}'\:=\:\mathrm{4x}^{\mathrm{3}} \:,\:\mathrm{y}'\:=\:\frac{\mathrm{2x}^{\mathrm{3}} }{\:\sqrt{\mathrm{y}}}\:=\:\frac{\mathrm{0}}{\mathrm{0}}\:\left(\mathrm{does}\:\mathrm{not}\:\mathrm{exist}\:\right) \\ $$
Commented by mr W last updated on 28/Feb/21
$$\mathrm{y}'\:=\:\frac{\mathrm{2x}^{\mathrm{3}} }{\:\sqrt{\mathrm{y}}}\:=\frac{\mathrm{2}{x}^{\mathrm{3}} }{{x}^{\mathrm{2}} }=\mathrm{2}{x} \\ $$$${f}'\left(\mathrm{0}\right)=\mathrm{0} \\ $$