Menu Close

lim-x-1-x-3-1-3-x-4-1-1-4-




Question Number 163386 by LEKOUMA last updated on 06/Jan/22
lim_(x→−∞) ((1−x^3 ))^(1/3) −((x^4 −1))^(1/4)
$$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\sqrt[{\mathrm{3}}]{\mathrm{1}−{x}^{\mathrm{3}} }−\sqrt[{\mathrm{4}}]{{x}^{\mathrm{4}} −\mathrm{1}} \\ $$
Answered by cortano1 last updated on 06/Jan/22
 Let −x = (1/Y) ;  { ((Y→0)),((x=−(1/Y))) :}   lim_(Y→0) ((1−(−(1/Y^3 ))))^(1/3) −(((1/Y^4 )−1))^(1/4)     = lim_(Y→0)  ((((Y^3 +1))^(1/3) −((1−Y^4 ))^(1/4) )/Y)   = lim_(Y→0)  (((1+(Y^3 /3))−(1−(Y^4 /4)))/Y)   = lim_(Y→0)  (Y^2 /3) + (Y^3 /4) = 0
$$\:{Let}\:−{x}\:=\:\frac{\mathrm{1}}{{Y}}\:;\:\begin{cases}{{Y}\rightarrow\mathrm{0}}\\{{x}=−\frac{\mathrm{1}}{{Y}}}\end{cases} \\ $$$$\:\underset{{Y}\rightarrow\mathrm{0}} {\mathrm{lim}}\sqrt[{\mathrm{3}}]{\mathrm{1}−\left(−\frac{\mathrm{1}}{{Y}^{\mathrm{3}} }\right)}−\sqrt[{\mathrm{4}}]{\frac{\mathrm{1}}{{Y}^{\mathrm{4}} }−\mathrm{1}}\: \\ $$$$\:=\:\underset{{Y}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}}]{{Y}^{\mathrm{3}} +\mathrm{1}}−\sqrt[{\mathrm{4}}]{\mathrm{1}−{Y}^{\mathrm{4}} }}{{Y}} \\ $$$$\:=\:\underset{{Y}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+\frac{{Y}^{\mathrm{3}} }{\mathrm{3}}\right)−\left(\mathrm{1}−\frac{{Y}^{\mathrm{4}} }{\mathrm{4}}\right)}{{Y}} \\ $$$$\:=\:\underset{{Y}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{Y}^{\mathrm{2}} }{\mathrm{3}}\:+\:\frac{{Y}^{\mathrm{3}} }{\mathrm{4}}\:=\:\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *