Question Number 97936 by bobhans last updated on 10/Jun/20
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\sqrt{\mathrm{45}−\sqrt{\mathrm{2000}}\:}\:\:+\:\:\sqrt{\mathrm{45}+\sqrt{\mathrm{2000}}}\: \\ $$
Commented by pranesh last updated on 10/Jun/20
$${find}\:{y} \\ $$
Answered by john santu last updated on 10/Jun/20
$$\mathrm{let}\:\mathrm{z}_{\mathrm{1}} \:=\:\sqrt{\mathrm{45}−\sqrt{\mathrm{2000}}}\:\:,\:\mathrm{z}_{\mathrm{2}} \:=\:\sqrt{\mathrm{45}+\sqrt{\mathrm{2000}}} \\ $$$$\Leftrightarrow\mathrm{z}_{\mathrm{1}} ^{\mathrm{2}} \:+\:\mathrm{z}_{\mathrm{2}} ^{\mathrm{2}} \:=\:\mathrm{90}\:\wedge\:\mathrm{z}_{\mathrm{1}} \mathrm{z}_{\mathrm{2}} \:\sqrt{\left(\mathrm{45}−\sqrt{\mathrm{2000}}\right)\left(\mathrm{45}+\sqrt{\mathrm{2000}}\right)}\:=\:\mathrm{5} \\ $$$$\mathrm{then}\:\left(\mathrm{z}_{\mathrm{1}} +\mathrm{z}_{\mathrm{2}} \right)^{\mathrm{2}} \:=\:\mathrm{z}_{\mathrm{1}} ^{\mathrm{2}} \:+\:\mathrm{z}_{\mathrm{2}} ^{\mathrm{2}} \:+\:\mathrm{2z}_{\mathrm{1}} \mathrm{z}_{\mathrm{2}} \:=\:\mathrm{100} \\ $$$$\mathrm{as}\:\mathrm{both}\:\mathrm{z}_{\mathrm{1}} \:\mathrm{and}\:\mathrm{z}_{\mathrm{2}} \:\mathrm{are}\:\mathrm{positive}\: \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{z}_{\mathrm{1}} \:+\:\mathrm{z}_{\mathrm{2}} \:=\:\mathrm{10}\: \\ $$