Menu Close

let-f-x-0-e-t-1-xt-dt-calculate-f-n-0-




Question Number 32739 by caravan msup abdo. last updated on 01/Apr/18
let f(x)=∫_0 ^∞    (e^(−t) /(1+xt))dt  calculate f^((n)) (0).
$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{−{t}} }{\mathrm{1}+{xt}}{dt} \\ $$$${calculate}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right). \\ $$
Commented by abdo imad last updated on 03/Apr/18
f is C^∞   and f^′ (x) =∫_0 ^∞   (∂/∂x)( (e^(−t) /(1+xt)))dt  = ∫_0 ^∞  ((−t e^(−t) )/((1+xt)^2 )) dt  also we have f(x) =∫_0 ^∞  (e^(−t) /t) (1/(x+(1/t)))dt ⇒  f^((n)) (x) = ∫_0 ^∞   (e^(−t) /t) (((−1)^n  n!)/((x+(1/t))^(n+1) ))dt  = (−1)^n  n!  ∫_0 ^∞     (e^(−t) /t)  (t^(n+1) /((1+xt)^(n+1) )) dt  =(−1)^n (n!) ∫_0 ^∞   ((t^n  e^(−t) )/((1+xt)^(n+1) ))dt ⇒  f^((n)) (0) = (−1)^n (n!) ∫_0 ^∞  t^n  e^(−t) dt let calculate  A_(n ) =∫_0 ^∞  t^n  e^(−t) dt .by parts  A_n   = [−t^n  e^(−t) ]_0 ^∞   +∫_0 ^∞  n t^(n−1)  e^(−t) dt =n A_(n−1)  ⇒  Π_(k=1) ^n  A_k =n! Π_(k=1) ^n  A_(k−1)  ⇒ A_n =n! A_0 =n! (look also  that A_n =Γ(n+1) =n!) ⇒f^((n)) (0) =(−1)^n (n!)^2  .
$${f}\:{is}\:{C}^{\infty} \:\:{and}\:{f}^{'} \left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\partial}{\partial{x}}\left(\:\frac{{e}^{−{t}} }{\mathrm{1}+{xt}}\right){dt} \\ $$$$=\:\int_{\mathrm{0}} ^{\infty} \:\frac{−{t}\:{e}^{−{t}} }{\left(\mathrm{1}+{xt}\right)^{\mathrm{2}} }\:{dt}\:\:{also}\:{we}\:{have}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−{t}} }{{t}}\:\frac{\mathrm{1}}{{x}+\frac{\mathrm{1}}{{t}}}{dt}\:\Rightarrow \\ $$$${f}^{\left({n}\right)} \left({x}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{t}} }{{t}}\:\frac{\left(−\mathrm{1}\right)^{{n}} \:{n}!}{\left({x}+\frac{\mathrm{1}}{{t}}\right)^{{n}+\mathrm{1}} }{dt} \\ $$$$=\:\left(−\mathrm{1}\right)^{{n}} \:{n}!\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{e}^{−{t}} }{{t}}\:\:\frac{{t}^{{n}+\mathrm{1}} }{\left(\mathrm{1}+{xt}\right)^{{n}+\mathrm{1}} }\:{dt} \\ $$$$=\left(−\mathrm{1}\right)^{{n}} \left({n}!\right)\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{{n}} \:{e}^{−{t}} }{\left(\mathrm{1}+{xt}\right)^{{n}+\mathrm{1}} }{dt}\:\Rightarrow \\ $$$${f}^{\left({n}\right)} \left(\mathrm{0}\right)\:=\:\left(−\mathrm{1}\right)^{{n}} \left({n}!\right)\:\int_{\mathrm{0}} ^{\infty} \:{t}^{{n}} \:{e}^{−{t}} {dt}\:{let}\:{calculate} \\ $$$${A}_{{n}\:} =\int_{\mathrm{0}} ^{\infty} \:{t}^{{n}} \:{e}^{−{t}} {dt}\:.{by}\:{parts} \\ $$$${A}_{{n}} \:\:=\:\left[−{t}^{{n}} \:{e}^{−{t}} \right]_{\mathrm{0}} ^{\infty} \:\:+\int_{\mathrm{0}} ^{\infty} \:{n}\:{t}^{{n}−\mathrm{1}} \:{e}^{−{t}} {dt}\:={n}\:{A}_{{n}−\mathrm{1}} \:\Rightarrow \\ $$$$\prod_{{k}=\mathrm{1}} ^{{n}} \:{A}_{{k}} ={n}!\:\prod_{{k}=\mathrm{1}} ^{{n}} \:{A}_{{k}−\mathrm{1}} \:\Rightarrow\:{A}_{{n}} ={n}!\:{A}_{\mathrm{0}} ={n}!\:\left({look}\:{also}\right. \\ $$$$\left.{that}\:{A}_{{n}} =\Gamma\left({n}+\mathrm{1}\right)\:={n}!\right)\:\Rightarrow{f}^{\left({n}\right)} \left(\mathrm{0}\right)\:=\left(−\mathrm{1}\right)^{{n}} \left({n}!\right)^{\mathrm{2}} \:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *