Menu Close

advanced-calculus-prove-that-i-0-pi-2-cos-tan-x-x-cos-x-dx-pi-e-ii-n-2-e-1-1-n-2-n-2-pi-e-e-




Question Number 134185 by mnjuly1970 last updated on 28/Feb/21
            .....advanced   calculus....      prove  that::       i:𝛗=∫_0 ^( (Ο€/2)) ((cos(tan(x)βˆ’x))/(cos(x)))dx=(Ο€/e)      ii:Ξ _(n=2) ^∞ e(1βˆ’(1/n^2 ))^n^2  =(Ο€/(e(√e)))
$$\:\:\:\:\:\:\:\:\:\:\:\:…..{advanced}\:\:\:{calculus}…. \\ $$$$\:\:\:\:{prove}\:\:{that}:: \\ $$$$\:\:\:\:\:{i}:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{cos}\left({tan}\left({x}\right)βˆ’{x}\right)}{{cos}\left({x}\right)}{dx}=\frac{\pi}{{e}} \\ $$$$\:\:\:\:{ii}:\underset{{n}=\mathrm{2}} {\overset{\infty} {\prod}}{e}\left(\mathrm{1}βˆ’\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)^{{n}^{\mathrm{2}} } =\frac{\pi}{{e}\sqrt{{e}}} \\ $$$$\:\: \\ $$
Answered by mindispower last updated on 28/Feb/21
βˆ…=∫_0 ^(Ο€/2) cos(tg(x))+sin(tg(x))tg(x)dx  =A+B,tg(x)=tβ‡’  A=(1/2)Re∫_(βˆ’βˆž) ^∞ (e^(it) /(1+t^2 ))dt=Re(iΟ€.Res((e^(it) /(1+t^2 )),t=i)  =(Ο€/(2e))  B=(1/2)Im∫_(βˆ’βˆž) ^∞ (t/(1+t^2 ))e^(it) dt  =Im.iΟ€Res(((te^(it) )/(1+t^2 )),t=i)=(Ο€/(2e))  βˆ…=A+B=(Ο€/e)
$$\emptyset=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}\left({tg}\left({x}\right)\right)+{sin}\left({tg}\left({x}\right)\right){tg}\left({x}\right){dx} \\ $$$$={A}+{B},{tg}\left({x}\right)={t}\Rightarrow \\ $$$${A}=\frac{\mathrm{1}}{\mathrm{2}}{Re}\int_{βˆ’\infty} ^{\infty} \frac{{e}^{{it}} }{\mathrm{1}+{t}^{\mathrm{2}} }{dt}={Re}\left({i}\pi.{Res}\left(\frac{{e}^{{it}} }{\mathrm{1}+{t}^{\mathrm{2}} },{t}={i}\right)\right. \\ $$$$=\frac{\pi}{\mathrm{2}{e}} \\ $$$${B}=\frac{\mathrm{1}}{\mathrm{2}}{Im}\int_{βˆ’\infty} ^{\infty} \frac{{t}}{\mathrm{1}+{t}^{\mathrm{2}} }{e}^{{it}} {dt} \\ $$$$={Im}.{i}\pi{Res}\left(\frac{{te}^{{it}} }{\mathrm{1}+{t}^{\mathrm{2}} },{t}={i}\right)=\frac{\pi}{\mathrm{2}{e}} \\ $$$$\emptyset={A}+{B}=\frac{\pi}{{e}} \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 28/Feb/21
mercey mr mindispower..
$${mercey}\:{mr}\:{mindispower}.. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *