Question Number 164122 by qaz last updated on 14/Jan/22
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mathrm{sin}\:\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}}=? \\ $$
Answered by mathmax by abdo last updated on 15/Jan/22
$$\mathrm{we}\:\mathrm{know}\:\:\mathrm{x}−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{6}}\leqslant\mathrm{sinx}\leqslant\mathrm{x}\:\Rightarrow\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}}−\frac{\mathrm{1}}{\mathrm{6}\left(\mathrm{n}+\mathrm{k}\right)^{\mathrm{3}} }\leqslant\mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}}\right)\leqslant\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}} \\ $$$$\Rightarrow\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}}−\frac{\mathrm{1}}{\mathrm{6}}\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{k}\right)^{\mathrm{3}} }\leqslant\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}}\right)\leqslant\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}} \\ $$$$\mathrm{but}\:\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}}=\frac{\mathrm{1}}{\mathrm{n}}\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{k}}{\mathrm{n}}}\rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{dx}}{\mathrm{1}+\mathrm{x}}=\mathrm{ln2} \\ $$$$\mathrm{n}+\mathrm{k}\geqslant\mathrm{n}+\mathrm{1}>\mathrm{n}\:\Rightarrow\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}}<\frac{\mathrm{1}}{\mathrm{n}}\:\Rightarrow\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{k}\right)^{\mathrm{3}} }<\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{3}} }\:\Rightarrow\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{k}\right)^{\mathrm{3}} }<\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\rightarrow\mathrm{0}\:\Rightarrow \\ $$$$\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}}\right)=\mathrm{ln}\left(\mathrm{2}\right) \\ $$