Menu Close

Question-98616




Question Number 98616 by bemath last updated on 15/Jun/20
Answered by bobhans last updated on 15/Jun/20
lim_(n→∞ )  (((√5)/( (√(9+9)))))^n  = lim_(n→∞)  (((√5)/( (√(18)))))^n   = (√(lim_(n→∞) ((5/(18)))^n )) = 0 . ■
$$\underset{\mathrm{n}\rightarrow\infty\:} {\mathrm{lim}}\:\left(\frac{\sqrt{\mathrm{5}}}{\:\sqrt{\mathrm{9}+\mathrm{9}}}\right)^{\mathrm{n}} \:=\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\sqrt{\mathrm{5}}}{\:\sqrt{\mathrm{18}}}\right)^{\mathrm{n}} \\ $$$$=\:\sqrt{\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{5}}{\mathrm{18}}\right)^{\mathrm{n}} }\:=\:\mathrm{0}\:.\:\blacksquare \\ $$
Answered by mathmax by abdo last updated on 15/Jun/20
let A_n =(((2+i)^n )/((3−3i)^n )) ⇒A_n =((((√5)e^(iarctan((1/2))) )^n )/(3^n ((√2)e^(−((iπ)/4)) )^n )) =((((√5))^n  e^(−inarctan((1/2))) )/((3(√2))^n  e^(−((inπ)/4)) )) ⇒  A_n =(((√5)/(3(√2))))^n  e^(((inπ)/4)−inarctan((1/2)))  ⇒∣A_n ∣ =(((√5)/(3(√2))))^n  →0  (n→∞) due to ∣((√5)/(3(√2)))∣<1  ⇒lim_(n→+∞)    A_n =0
$$\mathrm{let}\:\mathrm{A}_{\mathrm{n}} =\frac{\left(\mathrm{2}+\mathrm{i}\right)^{\mathrm{n}} }{\left(\mathrm{3}−\mathrm{3i}\right)^{\mathrm{n}} }\:\Rightarrow\mathrm{A}_{\mathrm{n}} =\frac{\left(\sqrt{\mathrm{5}}\mathrm{e}^{\mathrm{iarctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} \right)^{\mathrm{n}} }{\mathrm{3}^{\mathrm{n}} \left(\sqrt{\mathrm{2}}\mathrm{e}^{−\frac{\mathrm{i}\pi}{\mathrm{4}}} \right)^{\mathrm{n}} }\:=\frac{\left(\sqrt{\mathrm{5}}\right)^{\mathrm{n}} \:\mathrm{e}^{−\mathrm{inarctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} }{\left(\mathrm{3}\sqrt{\mathrm{2}}\right)^{\mathrm{n}} \:\mathrm{e}^{−\frac{\mathrm{in}\pi}{\mathrm{4}}} }\:\Rightarrow \\ $$$$\mathrm{A}_{\mathrm{n}} =\left(\frac{\sqrt{\mathrm{5}}}{\mathrm{3}\sqrt{\mathrm{2}}}\right)^{\mathrm{n}} \:\mathrm{e}^{\frac{\mathrm{in}\pi}{\mathrm{4}}−\mathrm{inarctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} \:\Rightarrow\mid\mathrm{A}_{\mathrm{n}} \mid\:=\left(\frac{\sqrt{\mathrm{5}}}{\mathrm{3}\sqrt{\mathrm{2}}}\right)^{\mathrm{n}} \:\rightarrow\mathrm{0}\:\:\left(\mathrm{n}\rightarrow\infty\right)\:\mathrm{due}\:\mathrm{to}\:\mid\frac{\sqrt{\mathrm{5}}}{\mathrm{3}\sqrt{\mathrm{2}}}\mid<\mathrm{1} \\ $$$$\Rightarrow\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\:\:\mathrm{A}_{\mathrm{n}} =\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *