Question Number 164178 by mr W last updated on 15/Jan/22
Commented by mr W last updated on 15/Jan/22
$${two}\:{points}\:{P},\:{Q}\:{lie}\:{on}\:{the}\:{parabola} \\ $$$${with}\:{PQ}={b}.\:{find}\:{the}\:{locus}\:{of}\:{its} \\ $$$${midpoint}\:{M}.\:{find}\:{the}\:{lowest}\:{possible} \\ $$$${position}\:{of}\:{M}. \\ $$
Answered by mindispower last updated on 15/Jan/22
$${P}\left({a},{a}^{\mathrm{2}} \right);{Q}\left({b},{b}^{\mathrm{2}} \right) \\ $$$${M}=\left(\frac{{a}+{b}}{\mathrm{2}},\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{\mathrm{2}}\right) \\ $$$${PQ}={l}\Rightarrow\left({b}−{a}\right)^{\mathrm{2}} +\left({b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)^{\mathrm{2}} ={l}^{\mathrm{2}} \\ $$$$\left({b}−{a}\right)^{\mathrm{2}} \left(\mathrm{1}+\left({b}+{a}\right)^{\mathrm{2}} \right)={l}^{\mathrm{2}} \\ $$$${b}−{a}={y} \\ $$$${b}+{a}={z} \\ $$$${y}^{\mathrm{2}} \left(\mathrm{1}+{z}^{\mathrm{2}} \right)={l}^{\mathrm{2}} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\frac{{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${we}\:{Want}\:{Min}\left(\frac{\mathrm{1}}{\mathrm{8}}\left({y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)\because{y}^{\mathrm{2}} \left(\mathrm{1}+{z}^{\mathrm{2}} \right)={l}^{\mathrm{2}} \right. \\ $$$${f}\left({x},{y},\gamma\right)=\frac{\mathrm{1}}{\mathrm{8}}{y}^{\mathrm{2}} +{z}^{\mathrm{2}} −\gamma\left({y}^{\mathrm{2}} \left(\mathrm{1}+{z}^{\mathrm{2}} \right)−\boldsymbol{{l}}^{\mathrm{2}} \right) \\ $$$$\partial_{{y}} {f}=\mathrm{0}\Leftrightarrow\frac{\mathrm{1}}{\mathrm{4}}{y}−\mathrm{2}{y}\gamma\left(\mathrm{1}+{z}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$${y}=\mathrm{0}\:{or}\:\gamma=\frac{\mathrm{1}}{\mathrm{8}\left(\mathrm{1}+{z}^{\mathrm{2}} \right)} \\ $$$$\partial{zf}=\mathrm{0}\Leftrightarrow\mathrm{0}\Rightarrow\frac{\mathrm{1}}{\mathrm{4}}{z}−\mathrm{2}\gamma{y}^{\mathrm{2}} {z}=\mathrm{0} \\ $$$${z}\left(\mathrm{1}−\mathrm{8}\gamma{y}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$${y}^{\mathrm{2}} \left(\mathrm{1}+{z}^{\mathrm{2}} \right)={l}^{\mathrm{2}} \\ $$$${y}=\mathrm{0}\Rightarrow{l}=\mathrm{0},{z}=\mathrm{0}\:{P}={Q}={O}\left(\mathrm{0},\mathrm{0}\right) \\ $$$${l}>\mathrm{0},{z}=\mathrm{0}\Rightarrow{y}^{\mathrm{2}} ={l}^{\mathrm{2}} ,{y}\left(\mathrm{1}−\mathrm{8}\gamma\right)=\mathrm{0} \\ $$$${y}={b}−{a},\mathrm{0}={a}+{b} \\ $$$${b}=−{a}=\frac{{y}}{\mathrm{2}}{M}=\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{\mathrm{2}}=\frac{{l}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\gamma=\frac{\mathrm{1}}{\mathrm{8}\left(\mathrm{1}+{z}^{\mathrm{2}} \right)}=\frac{\mathrm{1}}{\mathrm{8}{y}^{\mathrm{2}} } \\ $$$${y}^{\mathrm{2}} =\mathrm{1}+{z}^{\mathrm{2}} \\ $$$${y}^{\mathrm{4}} ={l}^{\mathrm{2}} \\ $$$${y}^{\mathrm{2}} ={l} \\ $$$${z}^{\mathrm{2}} ={l}−\mathrm{1},{l}\geqslant\mathrm{1} \\ $$$$\frac{{l}}{\mathrm{4}}\leqslant\frac{{l}^{\mathrm{2}} }{\mathrm{4}} \\ $$$${l}=\mathrm{0}\:{min}=\mathrm{0} \\ $$$${l}\in\left[\mathrm{0},\mathrm{1}\right]\:{min}=\frac{{l}^{\mathrm{2}} }{\mathrm{4}} \\ $$$${l}>\mathrm{1}\:{min}=\frac{{l}}{\mathrm{4}}\:{i}\:{did}\:{quick}\:{i}\:{will}\:{tchek}\:{it} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by mr W last updated on 15/Jan/22
$${thanks}\:{sir}! \\ $$
Commented by mindispower last updated on 15/Jan/22
$${pleasur}\:{sir}\:{nice}\:{day} \\ $$
Answered by mr W last updated on 15/Jan/22
$${parabola}\:{y}=\frac{{x}^{\mathrm{2}} }{{a}}\:{with}\:{a}=\mathrm{1}\:{here} \\ $$$${say}\:{P}\left({p},\frac{{p}^{\mathrm{2}} }{{a}}\right),\:{Q}\left({q},\frac{{q}^{\mathrm{2}} }{{a}}\right) \\ $$$${say}\:{M}\left({u},{v}\right) \\ $$$${u}=\frac{{p}+{q}}{\mathrm{2}} \\ $$$${v}=\frac{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }{\mathrm{2}{a}} \\ $$$$\Rightarrow{p}+{q}=\mathrm{2}{u} \\ $$$$\Rightarrow{p}^{\mathrm{2}} +{q}^{\mathrm{2}} =\mathrm{2}{av} \\ $$$$\left({p}+{q}\right)^{\mathrm{2}} ={p}^{\mathrm{2}} +{q}^{\mathrm{2}} +\mathrm{2}{pq} \\ $$$$\left({p}−{q}\right)^{\mathrm{2}} ={p}^{\mathrm{2}} +{q}^{\mathrm{2}} −\mathrm{2}{pq} \\ $$$$\Rightarrow\left({p}−{q}\right)^{\mathrm{2}} +\left({p}+{q}\right)^{\mathrm{2}} =\mathrm{2}\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\left({p}−{q}\right)^{\mathrm{2}} =\mathrm{2}\left(\mathrm{2}{av}\right)−\left(\mathrm{2}{u}\right)^{\mathrm{2}} =\mathrm{4}\left({av}−{u}^{\mathrm{2}} \right) \\ $$$${PQ}^{\mathrm{2}} =\left({p}−{q}\right)^{\mathrm{2}} +\left(\frac{{p}^{\mathrm{2}} }{{a}}−\frac{{q}^{\mathrm{2}} }{{a}}\right)^{\mathrm{2}} ={b}^{\mathrm{2}} \\ $$$$\left({p}−{q}\right)^{\mathrm{2}} \left[\mathrm{1}+\frac{\left({p}+{q}\right)^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right]={b}^{\mathrm{2}} \\ $$$$\mathrm{4}\left({av}−{u}^{\mathrm{2}} \right)\left[\mathrm{1}+\frac{\left(\mathrm{2}{u}\right)^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right]={b}^{\mathrm{2}} \\ $$$$\mathrm{4}\left({av}−{u}^{\mathrm{2}} \right)\left(\mathrm{1}+\frac{\mathrm{4}{u}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right)={b}^{\mathrm{2}} \\ $$$${v}=\frac{{u}^{\mathrm{2}} }{{a}}+\frac{{ab}^{\mathrm{2}} }{\mathrm{4}\left({a}^{\mathrm{2}} +\mathrm{4}{u}^{\mathrm{2}} \right)} \\ $$$${or}\:{locus}\:{of}\:{point}\:{M}\:{is} \\ $$$${y}=\frac{{x}^{\mathrm{2}} }{{a}}+\frac{{ab}^{\mathrm{2}} }{\mathrm{4}\left({a}^{\mathrm{2}} +\mathrm{4}{x}^{\mathrm{2}} \right)} \\ $$$$ \\ $$$${y}=\frac{\mathrm{4}{x}^{\mathrm{2}} +{a}^{\mathrm{2}} }{\mathrm{4}{a}}+\frac{{ab}^{\mathrm{2}} }{\mathrm{4}\left({a}^{\mathrm{2}} +\mathrm{4}{x}^{\mathrm{2}} \right)}−\frac{{a}}{\mathrm{4}} \\ $$$$\:\:\geqslant\mathrm{2}\sqrt{\frac{\mathrm{4}{x}^{\mathrm{2}} +{a}^{\mathrm{2}} }{\mathrm{4}{a}}×\frac{{ab}^{\mathrm{2}} }{\mathrm{4}\left({a}^{\mathrm{2}} +\mathrm{4}{x}^{\mathrm{2}} \right)}}−\frac{{a}}{\mathrm{4}} \\ $$$$\:\:=\frac{{b}}{\mathrm{2}}−\frac{{a}}{\mathrm{4}} \\ $$$${i}.{e}.\:\:{y}_{{min}} =\frac{{b}}{\mathrm{2}}−\frac{{a}}{\mathrm{4}}\:{when} \\ $$$$\frac{\mathrm{4}{x}^{\mathrm{2}} +{a}^{\mathrm{2}} }{\mathrm{4}{a}}=\frac{{ab}^{\mathrm{2}} }{\mathrm{4}\left({a}^{\mathrm{2}} +\mathrm{4}{x}^{\mathrm{2}} \right)} \\ $$$$\mathrm{4}{x}^{\mathrm{2}} +{a}^{\mathrm{2}} ={ab} \\ $$$${x}=\pm\frac{\sqrt{{a}\left({b}−{a}\right)}}{\mathrm{2}} \\ $$$${that}\:{means}\:{the}\:{lowest}\:{position}\:{of}\:{M} \\ $$$${is}\:\left(\pm\frac{\sqrt{{a}\left({b}−{a}\right)}}{\mathrm{2}},\:\frac{{b}}{\mathrm{2}}−\frac{{a}}{\mathrm{4}}\right) \\ $$
Commented by mr W last updated on 15/Jan/22
Commented by Tawa11 last updated on 15/Jan/22
$$\mathrm{Great}\:\mathrm{sir} \\ $$