Menu Close

Evaluate-3x-2-x-3-1-2-e-x-6-2x-3-dx-




Question Number 33155 by Joel578 last updated on 11/Apr/18
Evaluate  ∫_(−∞) ^∞  3x^2 (x^3  + 1)^2  e^(−x^6  − 2x^3 )  dx
$$\mathrm{Evaluate} \\ $$$$\int_{−\infty} ^{\infty} \:\mathrm{3}{x}^{\mathrm{2}} \left({x}^{\mathrm{3}} \:+\:\mathrm{1}\right)^{\mathrm{2}} \:{e}^{−{x}^{\mathrm{6}} \:−\:\mathrm{2}{x}^{\mathrm{3}} } \:{dx} \\ $$
Commented by Joel578 last updated on 11/Apr/18
My try  u = x^3  + 1  →  du = 3x^2  dx  I = ∫_(−∞) ^∞  3x^2  u^2  e^(−x^3 (u + 1))  ((du/(3x^2 )))      = ∫_(−∞) ^∞  u^2  e^(−(u − 1)(u + 1))  du      = ∫_(−∞) ^∞  u^2  e^(1 − u^2 )  du      = e ∫_(−∞) ^∞  u^2  e^(−u^2 )  du      = 2e ∫_0 ^∞  u^2  e^(−u^2 )  du  I dont know what to do next...
$$\mathrm{My}\:\mathrm{try} \\ $$$${u}\:=\:{x}^{\mathrm{3}} \:+\:\mathrm{1}\:\:\rightarrow\:\:{du}\:=\:\mathrm{3}{x}^{\mathrm{2}} \:{dx} \\ $$$${I}\:=\:\underset{−\infty} {\overset{\infty} {\int}}\:\mathrm{3}{x}^{\mathrm{2}} \:{u}^{\mathrm{2}} \:{e}^{−{x}^{\mathrm{3}} \left({u}\:+\:\mathrm{1}\right)} \:\left(\frac{{du}}{\mathrm{3}{x}^{\mathrm{2}} }\right) \\ $$$$\:\:\:\:=\:\underset{−\infty} {\overset{\infty} {\int}}\:{u}^{\mathrm{2}} \:{e}^{−\left({u}\:−\:\mathrm{1}\right)\left({u}\:+\:\mathrm{1}\right)} \:{du} \\ $$$$\:\:\:\:=\:\underset{−\infty} {\overset{\infty} {\int}}\:{u}^{\mathrm{2}} \:{e}^{\mathrm{1}\:−\:{u}^{\mathrm{2}} } \:{du} \\ $$$$\:\:\:\:=\:{e}\:\underset{−\infty} {\overset{\infty} {\int}}\:{u}^{\mathrm{2}} \:{e}^{−{u}^{\mathrm{2}} } \:{du} \\ $$$$\:\:\:\:=\:\mathrm{2}{e}\:\underset{\mathrm{0}} {\overset{\infty} {\int}}\:{u}^{\mathrm{2}} \:{e}^{−{u}^{\mathrm{2}} } \:{du} \\ $$$$\mathrm{I}\:\mathrm{dont}\:\mathrm{know}\:\mathrm{what}\:\mathrm{to}\:\mathrm{do}\:\mathrm{next}… \\ $$
Commented by prof Abdo imad last updated on 11/Apr/18
let put I = ∫_(−∞) ^(+∞)  3x^2 (x^3  +1)^2   e^(−x^6  −2x^3 ) dx .ch.x^3  =t  give  I =∫_(−∞) ^(+∞)   (t+1)^2  e^(−t^2 −2t)  dt  I =−(1/2) ∫_(−∞) ^(+∞) (t+1)(−2t−2)e^(−t^2  −2t) dt (by parts)  −2I  = [(t+1)e^(−t^2 −2t) ]_(−∞) ^(+∞)   −∫_(−∞) ^(+∞)  e^(−t^2  −2t) dt ⇒  2I  = ∫_(−∞) ^(+∞)   e^(−(  (t+1)^2  −1)) dt  = e ∫_(−∞) ^(+∞)   e^(−(t+1)^2 )  dt  =_(t+1=x)  e ∫_(−∞) ^(+∞)   e^(−x^2 ) dx = e (√(π )) ⇒ I = ((e(√π))/2)   brcause  ∫_(−∞) ^(+∞)  e^(−x^2 )  dx=(√π) .
$${let}\:{put}\:{I}\:=\:\int_{−\infty} ^{+\infty} \:\mathrm{3}{x}^{\mathrm{2}} \left({x}^{\mathrm{3}} \:+\mathrm{1}\right)^{\mathrm{2}} \:\:{e}^{−{x}^{\mathrm{6}} \:−\mathrm{2}{x}^{\mathrm{3}} } {dx}\:.{ch}.{x}^{\mathrm{3}} \:={t} \\ $$$${give}\:\:{I}\:=\int_{−\infty} ^{+\infty} \:\:\left({t}+\mathrm{1}\right)^{\mathrm{2}} \:{e}^{−{t}^{\mathrm{2}} −\mathrm{2}{t}} \:{dt} \\ $$$${I}\:=−\frac{\mathrm{1}}{\mathrm{2}}\:\int_{−\infty} ^{+\infty} \left({t}+\mathrm{1}\right)\left(−\mathrm{2}{t}−\mathrm{2}\right){e}^{−{t}^{\mathrm{2}} \:−\mathrm{2}{t}} {dt}\:\left({by}\:{parts}\right) \\ $$$$−\mathrm{2}{I}\:\:=\:\left[\left({t}+\mathrm{1}\right){e}^{−{t}^{\mathrm{2}} −\mathrm{2}{t}} \right]_{−\infty} ^{+\infty} \:\:−\int_{−\infty} ^{+\infty} \:{e}^{−{t}^{\mathrm{2}} \:−\mathrm{2}{t}} {dt}\:\Rightarrow \\ $$$$\mathrm{2}{I}\:\:=\:\int_{−\infty} ^{+\infty} \:\:{e}^{−\left(\:\:\left({t}+\mathrm{1}\right)^{\mathrm{2}} \:−\mathrm{1}\right)} {dt}\:\:=\:{e}\:\int_{−\infty} ^{+\infty} \:\:{e}^{−\left({t}+\mathrm{1}\right)^{\mathrm{2}} } \:{dt} \\ $$$$=_{{t}+\mathrm{1}={x}} \:{e}\:\int_{−\infty} ^{+\infty} \:\:{e}^{−{x}^{\mathrm{2}} } {dx}\:=\:{e}\:\sqrt{\pi\:}\:\Rightarrow\:{I}\:=\:\frac{{e}\sqrt{\pi}}{\mathrm{2}}\: \\ $$$${brcause}\:\:\int_{−\infty} ^{+\infty} \:{e}^{−{x}^{\mathrm{2}} } \:{dx}=\sqrt{\pi}\:. \\ $$
Commented by Joel578 last updated on 13/Apr/18
Thank you very much
$${Thank}\:{you}\:{very}\:{much} \\ $$
Commented by abdo imad last updated on 13/Apr/18
nevermind  sir joel.
$${nevermind}\:\:{sir}\:{joel}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *