Menu Close

find-the-value-of-0-pi-dx-1-2-sin-2-x-




Question Number 33169 by abdo imad last updated on 11/Apr/18
find the value of  ∫_0 ^π     (dx/(1+2 sin^2 x))  .
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{dx}}{\mathrm{1}+\mathrm{2}\:{sin}^{\mathrm{2}} {x}}\:\:. \\ $$
Commented by abdo imad last updated on 12/Apr/18
let put I  =∫_0 ^π    (dx/(1+2sin^2 x)) =∫_0 ^π    (dx/(1+2(1−cos^2 x)))  = ∫_0 ^π     (dx/(3 −2cos^2 x)) =∫_0 ^(π/2)    (dx/(3 −2 cos^2 x)) + ∫_(π/2) ^π    (dx/(3 −2cos^2 x))  =I_1  +I_2    but we knew that  1+tan^2 t =(1/(cos^2 t)) ⇒  cos^2 x = (1/(1+tan^2 x)) ⇒ I_1 = ∫_0 ^(π/2)      (dx/(3 −(2/(1+tan^2 x))))  = ∫_0 ^(π/2)     ((1+tan^2 x)/(1+3tan^2 x))dx  = _(tanx =t)  ∫_0 ^(+∞)   ((1+t^2 )/(1+3t^2 )) (dt/(1+t^2 ))  =∫_0 ^∞   (dt/(1+3t^2 ))  =_(t(√3) =u)  ∫_0 ^∞     (1/(1+u^2 )) (du/( (√3)))  =(1/( (√3))) [arctanu]_0 ^(+∞)   I_1  =(π/(2(√3)))  let find I_2 ?  I_2  = ∫_(π/2) ^π   (dx/(3 −2 cos^2 x))  =_(x = π −t)   ∫_(π/2) ^0    ((−dt)/(3 −2 cos^2 t)) =∫_0 ^(π/2)   (dt/(3−2cos^2 t))  =I_1   =(π/(2(√3)))  ⇒  I  = (π/(2(√3))) +(π/(2(√3))) = (π/( (√3)))  .  ★ I =(π/( (√3))) ★
$${let}\:{put}\:{I}\:\:=\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{dx}}{\mathrm{1}+\mathrm{2}{sin}^{\mathrm{2}} {x}}\:=\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{dx}}{\mathrm{1}+\mathrm{2}\left(\mathrm{1}−{cos}^{\mathrm{2}} {x}\right)} \\ $$$$=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{dx}}{\mathrm{3}\:−\mathrm{2}{cos}^{\mathrm{2}} {x}}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dx}}{\mathrm{3}\:−\mathrm{2}\:{cos}^{\mathrm{2}} {x}}\:+\:\int_{\frac{\pi}{\mathrm{2}}} ^{\pi} \:\:\:\frac{{dx}}{\mathrm{3}\:−\mathrm{2}{cos}^{\mathrm{2}} {x}} \\ $$$$={I}_{\mathrm{1}} \:+{I}_{\mathrm{2}} \:\:\:{but}\:{we}\:{knew}\:{that}\:\:\mathrm{1}+{tan}^{\mathrm{2}} {t}\:=\frac{\mathrm{1}}{{cos}^{\mathrm{2}} {t}}\:\Rightarrow \\ $$$${cos}^{\mathrm{2}} {x}\:=\:\frac{\mathrm{1}}{\mathrm{1}+{tan}^{\mathrm{2}} {x}}\:\Rightarrow\:{I}_{\mathrm{1}} =\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{dx}}{\mathrm{3}\:−\frac{\mathrm{2}}{\mathrm{1}+{tan}^{\mathrm{2}} {x}}} \\ $$$$=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{\mathrm{1}+{tan}^{\mathrm{2}} {x}}{\mathrm{1}+\mathrm{3}{tan}^{\mathrm{2}} {x}}{dx}\:\:=\:_{{tanx}\:={t}} \:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{\mathrm{1}+{t}^{\mathrm{2}} }{\mathrm{1}+\mathrm{3}{t}^{\mathrm{2}} }\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{\mathrm{1}+\mathrm{3}{t}^{\mathrm{2}} }\:\:=_{{t}\sqrt{\mathrm{3}}\:={u}} \:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\mathrm{1}}{\mathrm{1}+{u}^{\mathrm{2}} }\:\frac{{du}}{\:\sqrt{\mathrm{3}}}\:\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:\left[{arctanu}\right]_{\mathrm{0}} ^{+\infty} \\ $$$${I}_{\mathrm{1}} \:=\frac{\pi}{\mathrm{2}\sqrt{\mathrm{3}}}\:\:{let}\:{find}\:{I}_{\mathrm{2}} ? \\ $$$${I}_{\mathrm{2}} \:=\:\int_{\frac{\pi}{\mathrm{2}}} ^{\pi} \:\:\frac{{dx}}{\mathrm{3}\:−\mathrm{2}\:{cos}^{\mathrm{2}} {x}}\:\:=_{{x}\:=\:\pi\:−{t}} \:\:\int_{\frac{\pi}{\mathrm{2}}} ^{\mathrm{0}} \:\:\:\frac{−{dt}}{\mathrm{3}\:−\mathrm{2}\:{cos}^{\mathrm{2}} {t}}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dt}}{\mathrm{3}−\mathrm{2}{cos}^{\mathrm{2}} {t}} \\ $$$$={I}_{\mathrm{1}} \:\:=\frac{\pi}{\mathrm{2}\sqrt{\mathrm{3}}}\:\:\Rightarrow\:\:{I}\:\:=\:\frac{\pi}{\mathrm{2}\sqrt{\mathrm{3}}}\:+\frac{\pi}{\mathrm{2}\sqrt{\mathrm{3}}}\:=\:\frac{\pi}{\:\sqrt{\mathrm{3}}}\:\:. \\ $$$$\bigstar\:{I}\:=\frac{\pi}{\:\sqrt{\mathrm{3}}}\:\bigstar \\ $$
Answered by sma3l2996 last updated on 11/Apr/18
I=∫_0 ^π (dx/(1+2sin^2 x))  t=tanx⇒dx=(dt/(1+t^2 ))  sin^2 x=(t^2 /(1+t^2 ))  I=∫_0 ^∞ (dt/(1+t^2 +2t^2 ))=∫_0 ^∞ (dt/(3t^2 +1))  u=(√3)x⇒dx=((√3)/3)du  I=((√3)/3)∫_0 ^∞ (du/(u^2 +1))=((√3)/3)[tan^(−1) (u)]_0 ^∞   I=((√3)/6)π
$${I}=\int_{\mathrm{0}} ^{\pi} \frac{{dx}}{\mathrm{1}+\mathrm{2}{sin}^{\mathrm{2}} {x}} \\ $$$${t}={tanx}\Rightarrow{dx}=\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$${sin}^{\mathrm{2}} {x}=\frac{{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$${I}=\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} +\mathrm{2}{t}^{\mathrm{2}} }=\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{\mathrm{3}{t}^{\mathrm{2}} +\mathrm{1}} \\ $$$${u}=\sqrt{\mathrm{3}}{x}\Rightarrow{dx}=\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}{du} \\ $$$${I}=\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\int_{\mathrm{0}} ^{\infty} \frac{{du}}{{u}^{\mathrm{2}} +\mathrm{1}}=\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\left[{tan}^{−\mathrm{1}} \left({u}\right)\right]_{\mathrm{0}} ^{\infty} \\ $$$${I}=\frac{\sqrt{\mathrm{3}}}{\mathrm{6}}\pi \\ $$
Commented by abdo imad last updated on 12/Apr/18
your answer is not corect sir sma3l...
$${your}\:{answer}\:{is}\:{not}\:{corect}\:{sir}\:{sma}\mathrm{3}{l}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *