Menu Close

prove-that-0-1-lnx-p-1-x-2-p-n-0-1-n-2n-1-p-1-p-integr-




Question Number 33351 by caravan msup abdo. last updated on 14/Apr/18
prove that  ∫_0 ^1  (((−lnx)^p )/(1+x^2 )) =p! Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^(p+1) ))  p integr.
$${prove}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\left(−{lnx}\right)^{{p}} }{\mathrm{1}+{x}^{\mathrm{2}} }\:={p}!\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{{p}+\mathrm{1}} } \\ $$$${p}\:{integr}. \\ $$
Commented by math khazana by abdo last updated on 19/Apr/18
let put A_p = ∫_0 ^1    (((−lnx)^p )/(1+x^2 ))dx  A_p = (−1)^p   ∫_0 ^1    (((lnx)^p )/(1+x^2 ))dx  =(−1)^p  ∫_0 ^1 ( Σ_(n=0) ^∞ (−1)^n  x^(2n) )(lnx)^p dx  = Σ_(n=0) ^∞  (−1)^(n+p)   ∫_0 ^1    x^(2n)  (lnx)^p  dx  let find  I_(n,p) = ∫_0 ^1   x^n  (lnx)^p dx   by parts  I_(n,p) = [(1/(n+1)) x^(n+1) (lnx)^p  ]_0 ^1   − ∫_0 ^1    (1/(n+1))x^(n+1)   (p/x) (lnx)^(p−1)   =−(p/(n+1)) ∫_0 ^1   x^n  (lnx)^(p−1)  dx =((−p)/(n+1)) I_(n,p−1)  ⇒  I_(n,p)   = (((−p)(−(p−1)))/((n+1)^2 )) I_(n,p−2)  =....= (((−1)^p p!)/((n+1)^p ))  I_(n,0)   I_(n,0) = ∫_0 ^1  x^n  dx = (1/(n+1)) ⇒ I_(n,p)  = (((−1)^p  p!)/((n+1)^(p+1) ))  ⇒  ∫_0 ^1  x^(2n) (lnx)^p dx = (((−1)^p  p!)/((2n+1)^(p+1) ))  and  A_p  =Σ_(n=0) ^∞  (−1)^(n+p)   (((−1)^p  p!)/((2n+1)^(p+1) ))  =p! Σ_(n=0) ^∞    (((−1)^n )/((2n+1)^(p+1) )) .
$${let}\:{put}\:{A}_{{p}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\left(−{lnx}\right)^{{p}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$${A}_{{p}} =\:\left(−\mathrm{1}\right)^{{p}} \:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\left({lnx}\right)^{{p}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$=\left(−\mathrm{1}\right)^{{p}} \:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\:\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:{x}^{\mathrm{2}{n}} \right)\left({lnx}\right)^{{p}} {dx} \\ $$$$=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}+{p}} \:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:{x}^{\mathrm{2}{n}} \:\left({lnx}\right)^{{p}} \:{dx}\:\:{let}\:{find} \\ $$$${I}_{{n},{p}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{x}^{{n}} \:\left({lnx}\right)^{{p}} {dx}\:\:\:{by}\:{parts} \\ $$$${I}_{{n},{p}} =\:\left[\frac{\mathrm{1}}{{n}+\mathrm{1}}\:{x}^{{n}+\mathrm{1}} \left({lnx}\right)^{{p}} \:\right]_{\mathrm{0}} ^{\mathrm{1}} \:\:−\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\mathrm{1}}{{n}+\mathrm{1}}{x}^{{n}+\mathrm{1}} \:\:\frac{{p}}{{x}}\:\left({lnx}\right)^{{p}−\mathrm{1}} \\ $$$$=−\frac{{p}}{{n}+\mathrm{1}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{x}^{{n}} \:\left({lnx}\right)^{{p}−\mathrm{1}} \:{dx}\:=\frac{−{p}}{{n}+\mathrm{1}}\:{I}_{{n},{p}−\mathrm{1}} \:\Rightarrow \\ $$$${I}_{{n},{p}} \:\:=\:\frac{\left(−{p}\right)\left(−\left({p}−\mathrm{1}\right)\right)}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\:{I}_{{n},{p}−\mathrm{2}} \:=….=\:\frac{\left(−\mathrm{1}\right)^{{p}} {p}!}{\left({n}+\mathrm{1}\right)^{{p}} }\:\:{I}_{{n},\mathrm{0}} \\ $$$${I}_{{n},\mathrm{0}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \:{dx}\:=\:\frac{\mathrm{1}}{{n}+\mathrm{1}}\:\Rightarrow\:{I}_{{n},{p}} \:=\:\frac{\left(−\mathrm{1}\right)^{{p}} \:{p}!}{\left({n}+\mathrm{1}\right)^{{p}+\mathrm{1}} }\:\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{\mathrm{2}{n}} \left({lnx}\right)^{{p}} {dx}\:=\:\frac{\left(−\mathrm{1}\right)^{{p}} \:{p}!}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{{p}+\mathrm{1}} }\:\:{and} \\ $$$${A}_{{p}} \:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}+{p}} \:\:\frac{\left(−\mathrm{1}\right)^{{p}} \:{p}!}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{{p}+\mathrm{1}} } \\ $$$$={p}!\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{\boldsymbol{{n}}} }{\left(\mathrm{2}\boldsymbol{{n}}+\mathrm{1}\right)^{\boldsymbol{{p}}+\mathrm{1}} }\:. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *