Menu Close

let-P-n-x-1-x-2-1-x-4-1-x-2-n-calculate-lim-n-0-x-P-n-t-dt-with-0-lt-x-lt-1-




Question Number 33744 by prof Abdo imad last updated on 23/Apr/18
let  P_n (x)=(1+x^2 )(1+x^4 )....(1+x^2^n  )  calculate  lim_(n→+∞) ∫_0 ^x  P_n (t)dt  with  0<x<1 .
$${let}\:\:{P}_{{n}} \left({x}\right)=\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right)….\left(\mathrm{1}+{x}^{\mathrm{2}^{{n}} } \right) \\ $$$${calculate}\:\:{lim}_{{n}\rightarrow+\infty} \int_{\mathrm{0}} ^{{x}} \:{P}_{{n}} \left({t}\right){dt}\:\:{with}\:\:\mathrm{0}<{x}<\mathrm{1}\:. \\ $$
Commented by prof Abdo imad last updated on 25/Apr/18
we have proved that  P_n (t) = ((1−t^2^(n+1)  )/(1−t^2 )) ⇒  ∫_0 ^x   P_n (t)dt = ∫_0 ^x   ((1−t^2^(n+1)  )/(1−t^2 ))dt  = ∫_0 ^x    (dt/(1−t^2 ))  −∫_0 ^x    (t^2^(n+1)  /(1−t^2 )) dt  but  lim_(n→+∞)  ∫_0 ^x    (t^2^(n+1)  /(1−t^2 )) dt =0 because 0≤ ⇒t≤x<1  ⇒ lim_(n→+∞)   ∫_0 ^x   P_n (t)dt = ∫_0 ^x  (dt/(1−t^2 ))  =(1/2) ∫_0 ^x  ( (1/(1−t)) +(1/(1+t)))dt =[(1/2)ln∣((1+t)/(1−t))∣]_0 ^c   =(1/2) ln∣ ((1+x)/(1−x))∣ .
$${we}\:{have}\:{proved}\:{that}\:\:{P}_{{n}} \left({t}\right)\:=\:\frac{\mathrm{1}−{t}^{\mathrm{2}^{{n}+\mathrm{1}} } }{\mathrm{1}−{t}^{\mathrm{2}} }\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{{x}} \:\:{P}_{{n}} \left({t}\right){dt}\:=\:\int_{\mathrm{0}} ^{{x}} \:\:\frac{\mathrm{1}−{t}^{\mathrm{2}^{{n}+\mathrm{1}} } }{\mathrm{1}−{t}^{\mathrm{2}} }{dt} \\ $$$$=\:\int_{\mathrm{0}} ^{{x}} \:\:\:\frac{{dt}}{\mathrm{1}−{t}^{\mathrm{2}} }\:\:−\int_{\mathrm{0}} ^{{x}} \:\:\:\frac{{t}^{\mathrm{2}^{{n}+\mathrm{1}} } }{\mathrm{1}−{t}^{\mathrm{2}} }\:{dt}\:\:{but} \\ $$$${lim}_{{n}\rightarrow+\infty} \:\int_{\mathrm{0}} ^{{x}} \:\:\:\frac{{t}^{\mathrm{2}^{{n}+\mathrm{1}} } }{\mathrm{1}−{t}^{\mathrm{2}} }\:{dt}\:=\mathrm{0}\:{because}\:\mathrm{0}\leqslant\:\Rightarrow{t}\leqslant{x}<\mathrm{1} \\ $$$$\Rightarrow\:{lim}_{{n}\rightarrow+\infty} \:\:\int_{\mathrm{0}} ^{{x}} \:\:{P}_{{n}} \left({t}\right){dt}\:=\:\int_{\mathrm{0}} ^{{x}} \:\frac{{dt}}{\mathrm{1}−{t}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{{x}} \:\left(\:\frac{\mathrm{1}}{\mathrm{1}−{t}}\:+\frac{\mathrm{1}}{\mathrm{1}+{t}}\right){dt}\:=\left[\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid\frac{\mathrm{1}+{t}}{\mathrm{1}−{t}}\mid\right]_{\mathrm{0}} ^{{c}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:{ln}\mid\:\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\mid\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *