Menu Close

2x-y-1-5-2-x-2y-1-5-2-3x-2-8xy-3y-2-




Question Number 33764 by .none. last updated on 23/Apr/18
2x−y=(1/( (√5)−2))  x+2y=(1/( (√5)+2))  [3x^2 −8xy−3y^2 ]?
$$\mathrm{2}{x}−{y}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}−\mathrm{2}} \\ $$$${x}+\mathrm{2}{y}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}+\mathrm{2}} \\ $$$$\left[\mathrm{3}{x}^{\mathrm{2}} −\mathrm{8}{xy}−\mathrm{3}{y}^{\mathrm{2}} \right]? \\ $$
Answered by Rasheed.Sindhi last updated on 23/Apr/18
3x^2 −8xy−3y^2 =(x−3y)(3x+y)  −−−−−−−−−  2x−y=(1/( (√5)−2))............A  x+2y=(1/( (√5)+2))..............B  A+B: 3x+y=(1/( (√5)−2))+(1/( (√5)+2))=(((√5)+2+(√5)−2)/(5−4))                    =2(√5)  A−B: x−3y=(1/( (√5)−2))−(1/( (√5)+2))=(((√5)+2−(√5)+2)/(5−4))                      =4  −−−−−−−−−−−−  3x^2 −8xy−3y^2 =(x−3y)(3x+y)                                 =(4)(2(√5))=8(√5)
$$\mathrm{3x}^{\mathrm{2}} −\mathrm{8xy}−\mathrm{3y}^{\mathrm{2}} =\left(\mathrm{x}−\mathrm{3y}\right)\left(\mathrm{3x}+\mathrm{y}\right) \\ $$$$−−−−−−−−− \\ $$$$\mathrm{2}{x}−{y}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}−\mathrm{2}}…………\mathrm{A} \\ $$$${x}+\mathrm{2}{y}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}+\mathrm{2}}…………..\mathrm{B} \\ $$$$\mathrm{A}+\mathrm{B}:\:\mathrm{3x}+\mathrm{y}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}−\mathrm{2}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}+\mathrm{2}}=\frac{\sqrt{\mathrm{5}}+\mathrm{2}+\sqrt{\mathrm{5}}−\mathrm{2}}{\mathrm{5}−\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}\sqrt{\mathrm{5}} \\ $$$$\mathrm{A}−\mathrm{B}:\:\mathrm{x}−\mathrm{3y}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}−\mathrm{2}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}+\mathrm{2}}=\frac{\sqrt{\mathrm{5}}+\mathrm{2}−\sqrt{\mathrm{5}}+\mathrm{2}}{\mathrm{5}−\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{4} \\ $$$$−−−−−−−−−−−− \\ $$$$\mathrm{3x}^{\mathrm{2}} −\mathrm{8xy}−\mathrm{3y}^{\mathrm{2}} =\left(\mathrm{x}−\mathrm{3y}\right)\left(\mathrm{3x}+\mathrm{y}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left(\mathrm{4}\right)\left(\mathrm{2}\sqrt{\mathrm{5}}\right)=\mathrm{8}\sqrt{\mathrm{5}} \\ $$$$ \\ $$$$ \\ $$
Commented by .none. last updated on 23/Apr/18
Thanks to you,i can solve this now
$${Thanks}\:{to}\:{you},{i}\:{can}\:{solve}\:{this}\:{now} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *