Menu Close

let-a-C-and-a-lt-1-prove-that-the-function-f-x-n-0-a-n-x-n-is-developpable-at-point-1-and-the-radius-is-r-1-




Question Number 33891 by math khazana by abdo last updated on 26/Apr/18
let a∈C and ∣a∣<1 prove that the function  f(x)= Σ_(n=0) ^(+∞)  (a^n /(x+n)) is?developpable at point 1 and  the radius is r=1.
$${let}\:{a}\in{C}\:{and}\:\mid{a}\mid<\mathrm{1}\:{prove}\:{that}\:{the}\:{function} \\ $$$${f}\left({x}\right)=\:\sum_{{n}=\mathrm{0}} ^{+\infty} \:\frac{{a}^{{n}} }{{x}+{n}}\:{is}?{developpable}\:{at}\:{point}\:\mathrm{1}\:{and} \\ $$$${the}\:{radius}\:{is}\:{r}=\mathrm{1}. \\ $$
Commented by abdo imad last updated on 28/Apr/18
f is C^∞  inside R  and f^((p)) (x) =Σ_(n=0) ^∞ a^n (((−1)^p p!)/((x+n)^(p+1) ))  ⇒ f^((p)) (1) =Σ_(n=0) ^∞  a^n  (((−1)^p p!)/((n+1)^(p+1) )) =(−1)^p p!Σ_(n=0) ^∞  (a^n /((n+1)^(p+1) ))  =(−1)^p p! Σ_(n=1) ^∞   (a^(n−1) /n^(p+1) )  and we have  f(x) =Σ_(p=0) ^∞  ((f^((p)) (1))/(p!)) (x−1)^p   =Σ_(p=0) ^∞ (−1)^p (Σ_(n=1) ^∞  (a^(n−1) /n^(p+1) ))(x−1)^p   .
$${f}\:{is}\:{C}^{\infty} \:{inside}\:{R}\:\:{and}\:{f}^{\left({p}\right)} \left({x}\right)\:=\sum_{{n}=\mathrm{0}} ^{\infty} {a}^{{n}} \frac{\left(−\mathrm{1}\right)^{{p}} {p}!}{\left({x}+{n}\right)^{{p}+\mathrm{1}} } \\ $$$$\Rightarrow\:{f}^{\left({p}\right)} \left(\mathrm{1}\right)\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:{a}^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{p}} {p}!}{\left({n}+\mathrm{1}\right)^{{p}+\mathrm{1}} }\:=\left(−\mathrm{1}\right)^{{p}} {p}!\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{a}^{{n}} }{\left({n}+\mathrm{1}\right)^{{p}+\mathrm{1}} } \\ $$$$=\left(−\mathrm{1}\right)^{{p}} {p}!\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{a}^{{n}−\mathrm{1}} }{{n}^{{p}+\mathrm{1}} }\:\:{and}\:{we}\:{have} \\ $$$${f}\left({x}\right)\:=\sum_{{p}=\mathrm{0}} ^{\infty} \:\frac{{f}^{\left({p}\right)} \left(\mathrm{1}\right)}{{p}!}\:\left({x}−\mathrm{1}\right)^{{p}} \\ $$$$=\sum_{{p}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{p}} \left(\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{a}^{{n}−\mathrm{1}} }{{n}^{{p}+\mathrm{1}} }\right)\left({x}−\mathrm{1}\right)^{{p}} \:\:. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *