Question Number 3249 by Rasheed Soomro last updated on 08/Dec/15
$$\mathcal{H}{ow}\:{could}\:\sqrt{\mathrm{5}}\:\:{be}\:{drawn}\:{on}\:{numbered}\:{line}\:{using} \\ $$$${scale}\:{and}\:{compass}\:{only}?\:\left({Exactly}\:\sqrt{\mathrm{5}}\:{not}\:{its}\:{decimal}\:{approximation}.\right) \\ $$
Answered by prakash jain last updated on 08/Dec/15
$$\mathrm{For}\:\sqrt{\mathrm{5}} \\ $$$$\mathrm{draw}\:\mathrm{a}\:\mathrm{horizonal}\:\mathrm{line}\:\mathrm{AB}\:\mathrm{of}\:\mathrm{length}\:\mathrm{5}+\mathrm{1}=\mathrm{6} \\ $$$$\mathrm{mark}\:\mathrm{a}\:\mathrm{point}\:\mathrm{at}\:\mathrm{5}\:\left(\mathrm{C}\right). \\ $$$$\mathrm{bisect}\:\mathrm{AB}\:\mathrm{and}\:\mathrm{get}\:\mathrm{center}\:\mathrm{point}\:\mathrm{D}. \\ $$$$\mathrm{draw}\:\mathrm{a}\:\mathrm{semicircle}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{AD}. \\ $$$$\mathrm{draw}\:\:\bot^{{r}} \:\mathrm{to}\:\mathrm{AB}\:\mathrm{at}\:\mathrm{C}.\:\mathrm{Let}\:\mathrm{it}\:\mathrm{intersect}\:\mathrm{semicircle} \\ $$$$\mathrm{at}\:\mathrm{E} \\ $$$$\mathrm{length}\:\mathrm{of}\:\mathrm{CE}=\sqrt{\mathrm{5}} \\ $$$$\mathrm{DCE}\:\mathrm{is}\:\mathrm{a}\:\mathrm{right}\:\mathrm{angled}\:\mathrm{triangle} \\ $$$$\mathrm{DE}=\mathrm{3}\: \\ $$$$\mathrm{CD}=\mathrm{2} \\ $$$$\mathrm{DE}^{\mathrm{2}} =\mathrm{CD}^{\mathrm{2}} +\mathrm{CE}^{\mathrm{2}} \\ $$$$\mathrm{CE}^{\mathrm{2}} =\mathrm{5}\:\mathrm{or}\:\mathrm{CE}=\sqrt{\mathrm{5}} \\ $$
Commented by RasheedAhmad last updated on 08/Dec/15
$$\mathcal{N}{ice}! \\ $$