Menu Close

let-x-0-t-x-1-e-t-dt-with-x-gt-0-1-prove-that-x-1-x-pi-sin-pix-2-find-the-value-of-0-e-x-2-dx-




Question Number 33895 by math khazana by abdo last updated on 26/Apr/18
let Γ(x)=∫_0 ^∞  t^(x−1)  e^(−t) dt  with x>0  1) prove that Γ(x)Γ(1−x)= (π/(sin(πx)))  2) find the value of  ∫_0 ^∞  e^(−x^2 ) dx .
$${let}\:\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} \:{e}^{−{t}} {dt}\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\Gamma\left({x}\right)\Gamma\left(\mathrm{1}−{x}\right)=\:\frac{\pi}{{sin}\left(\pi{x}\right)} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}^{\mathrm{2}} } {dx}\:. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 27/Apr/18
2.let t=x^2       dt/dx=2x                  =2(√t)  ∫_0 ^∞ e^(−t) .1/2.t^(−1/2)  dt  =1/2∫_0 ^∞ e^(−t) t^(1/2−1) dt  =1/2⌈(1/2)  =1/2.(√Π)
$$\mathrm{2}.{let}\:{t}={x}^{\mathrm{2}} \\ $$$$\:\:\:\:{dt}/{dx}=\mathrm{2}{x} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}\sqrt{{t}} \\ $$$$\underset{\mathrm{0}} {\overset{\infty} {\int}}{e}^{−{t}} .\mathrm{1}/\mathrm{2}.{t}^{−\mathrm{1}/\mathrm{2}} \:{dt} \\ $$$$=\mathrm{1}/\mathrm{2}\underset{\mathrm{0}} {\overset{\infty} {\int}}{e}^{−{t}} {t}^{\mathrm{1}/\mathrm{2}−\mathrm{1}} {dt} \\ $$$$=\mathrm{1}/\mathrm{2}\lceil\left(\mathrm{1}/\mathrm{2}\right) \\ $$$$=\mathrm{1}/\mathrm{2}.\sqrt{\Pi} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 27/Apr/18
Commented by tanmay.chaudhury50@gmail.com last updated on 28/Apr/18
do you like the different method to find the solution  ...it is not available in apps..
$${do}\:{you}\:{like}\:{the}\:{different}\:{method}\:{to}\:{find}\:{the}\:{solution} \\ $$$$…{it}\:{is}\:{not}\:{available}\:{in}\:{apps}.. \\ $$
Commented by NECx last updated on 28/Apr/18
which app is this please?
$${which}\:{app}\:{is}\:{this}\:{please}? \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 28/Apr/18

Leave a Reply

Your email address will not be published. Required fields are marked *