Menu Close

Question-99516




Question Number 99516 by 175 last updated on 21/Jun/20
Answered by mathmax by abdo last updated on 21/Jun/20
I =∫_0 ^(π/4)  (dx/(cos^4 x+sin^4 x−cos^2 xsin^2 x)) ⇒ I =∫_0 ^(π/4)  (dx/((cos^2 x+sin^2 x)^(2 ) −3cos^2 x sin^2 x))  =∫_0 ^(π/4)  (dx/(1−3((1/2)sin(2x))^2 )) =∫_0 ^(π/4)  (dx/(1−(3/4)sin^2 (2x))) =4 ∫_0 ^(π/4)  (dx/(4−3×((1−cos(4x))/2)))  =8 ∫_0 ^(π/4)  (dx/(5+3cos(4x))) =_(4x=t)    8 ∫_0 ^(π )   (dt/(4(5+3cost))) =2 ∫_0 ^π  (dt/(5+3cost))  =_(tan((t/2))=u)      2 ∫_0 ^∞   ((2du)/((1+u^2 )(5+3((1−u^2 )/(1+u^2 ))))) =4 ∫_0 ^∞    (du/(5+5u^2 +3−3u^2 ))  =4 ∫_0 ^∞   (du/(2u^2 +8)) =2 ∫_0 ^∞   (du/(u^2  +4)) =_(u=2α)    2 ∫_0 ^∞   ((2dα)/(4(1+α^2 ))) =∫_0 ^∞  (dα/(1+α^2 )) =(π/2) ⇒  I =(π/2)
$$\mathrm{I}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{\mathrm{dx}}{\mathrm{cos}^{\mathrm{4}} \mathrm{x}+\mathrm{sin}^{\mathrm{4}} \mathrm{x}−\mathrm{cos}^{\mathrm{2}} \mathrm{xsin}^{\mathrm{2}} \mathrm{x}}\:\Rightarrow\:\mathrm{I}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{\mathrm{dx}}{\left(\mathrm{cos}^{\mathrm{2}} \mathrm{x}+\mathrm{sin}^{\mathrm{2}} \mathrm{x}\right)^{\mathrm{2}\:} −\mathrm{3cos}^{\mathrm{2}} \mathrm{x}\:\mathrm{sin}^{\mathrm{2}} \mathrm{x}} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{\mathrm{dx}}{\mathrm{1}−\mathrm{3}\left(\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\left(\mathrm{2x}\right)\right)^{\mathrm{2}} }\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{\mathrm{dx}}{\mathrm{1}−\frac{\mathrm{3}}{\mathrm{4}}\mathrm{sin}^{\mathrm{2}} \left(\mathrm{2x}\right)}\:=\mathrm{4}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{\mathrm{dx}}{\mathrm{4}−\mathrm{3}×\frac{\mathrm{1}−\mathrm{cos}\left(\mathrm{4x}\right)}{\mathrm{2}}} \\ $$$$=\mathrm{8}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{\mathrm{dx}}{\mathrm{5}+\mathrm{3cos}\left(\mathrm{4x}\right)}\:=_{\mathrm{4x}=\mathrm{t}} \:\:\:\mathrm{8}\:\int_{\mathrm{0}} ^{\pi\:} \:\:\frac{\mathrm{dt}}{\mathrm{4}\left(\mathrm{5}+\mathrm{3cost}\right)}\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\pi} \:\frac{\mathrm{dt}}{\mathrm{5}+\mathrm{3cost}} \\ $$$$=_{\mathrm{tan}\left(\frac{\mathrm{t}}{\mathrm{2}}\right)=\mathrm{u}} \:\:\:\:\:\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{2du}}{\left(\mathrm{1}+\mathrm{u}^{\mathrm{2}} \right)\left(\mathrm{5}+\mathrm{3}\frac{\mathrm{1}−\mathrm{u}^{\mathrm{2}} }{\mathrm{1}+\mathrm{u}^{\mathrm{2}} }\right)}\:=\mathrm{4}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{du}}{\mathrm{5}+\mathrm{5u}^{\mathrm{2}} +\mathrm{3}−\mathrm{3u}^{\mathrm{2}} } \\ $$$$=\mathrm{4}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{du}}{\mathrm{2u}^{\mathrm{2}} +\mathrm{8}}\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{du}}{\mathrm{u}^{\mathrm{2}} \:+\mathrm{4}}\:=_{\mathrm{u}=\mathrm{2}\alpha} \:\:\:\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{2d}\alpha}{\mathrm{4}\left(\mathrm{1}+\alpha^{\mathrm{2}} \right)}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{d}\alpha}{\mathrm{1}+\alpha^{\mathrm{2}} }\:=\frac{\pi}{\mathrm{2}}\:\Rightarrow \\ $$$$\mathrm{I}\:=\frac{\pi}{\mathrm{2}} \\ $$
Commented by 175 last updated on 21/Jun/20
thank you sir
Commented by mathmax by abdo last updated on 21/Jun/20
you are welcome
$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *