Menu Close

prove-that-lim-x-0-ln-x-ln-1-x-lim-x-1-ln-x-ln-1-x-




Question Number 34160 by candre last updated on 01/May/18
prove that  lim_(x→0^+ ) ln x∙ln (1+x)=lim_(x→1) ln x∙ln (1+x)
$${prove}\:{that} \\ $$$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}ln}\:{x}\centerdot\mathrm{ln}\:\left(\mathrm{1}+{x}\right)=\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}ln}\:{x}\centerdot\mathrm{ln}\:\left(\mathrm{1}+{x}\right) \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 01/May/18
Commented by tanmay.chaudhury50@gmail.com last updated on 01/May/18
see the graph LHS limit is zero also RHS limit  also zero
$${see}\:{the}\:{graph}\:{LHS}\:{limit}\:{is}\:{zero}\:{also}\:{RHS}\:{limit} \\ $$$${also}\:{zero} \\ $$
Commented by abdo mathsup 649 cc last updated on 02/May/18
we have lim_(x→0^+ )   ln(x)ln(1+x)  =lim_(x→0^+ )   (xlnx)((ln(1+x))/x)=0 because lim_(x→0^+ )  xln(x)=0  lim_(x→0^+ )   ((ln(1+x))/x) = 1  from another side  lim_(x→1) ln(x).ln(1+x) =ln(1)ln(2)=0 because  the function ln(x) is continue at 1 and 2.
$${we}\:{have}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:{ln}\left({x}\right){ln}\left(\mathrm{1}+{x}\right) \\ $$$$={lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\left({xlnx}\right)\frac{{ln}\left(\mathrm{1}+{x}\right)}{{x}}=\mathrm{0}\:{because}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:{xln}\left({x}\right)=\mathrm{0} \\ $$$${lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\frac{{ln}\left(\mathrm{1}+{x}\right)}{{x}}\:=\:\mathrm{1}\:\:{from}\:{another}\:{side} \\ $$$${lim}_{{x}\rightarrow\mathrm{1}} {ln}\left({x}\right).{ln}\left(\mathrm{1}+{x}\right)\:={ln}\left(\mathrm{1}\right){ln}\left(\mathrm{2}\right)=\mathrm{0}\:{because} \\ $$$${the}\:{function}\:{ln}\left({x}\right)\:{is}\:{continue}\:{at}\:\mathrm{1}\:{and}\:\mathrm{2}. \\ $$$$ \\ $$
Answered by MJS last updated on 02/May/18
right side:  ln1=0  0ln2=0  left side:  e^(lnx ln(x+1)) =(x+1)^(lnx)   lim_(x→0^+ ) (x+1)^(lnx) =1^(−∞) =1 ⇒  ⇒ lim_(x→0^+ ) lnx ln(x+1)=0
$$\mathrm{right}\:\mathrm{side}: \\ $$$$\mathrm{ln1}=\mathrm{0} \\ $$$$\mathrm{0ln2}=\mathrm{0} \\ $$$$\mathrm{left}\:\mathrm{side}: \\ $$$$\mathrm{e}^{\mathrm{ln}{x}\:\mathrm{ln}\left({x}+\mathrm{1}\right)} =\left({x}+\mathrm{1}\right)^{\mathrm{ln}{x}} \\ $$$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\left({x}+\mathrm{1}\right)^{\mathrm{ln}{x}} =\mathrm{1}^{−\infty} =\mathrm{1}\:\Rightarrow \\ $$$$\Rightarrow\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}ln}{x}\:\mathrm{ln}\left({x}+\mathrm{1}\right)=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *