Menu Close

who-can-prove-that-2-n-1produces-a-prime-number-when-n-is-a-prime-number-




Question Number 165322 by Ari last updated on 29/Jan/22
who can prove that 2^n −1produces  a prime number when  n  is a   prime number
$${who}\:{can}\:{prove}\:{that}\:\mathrm{2}^{{n}} −\mathrm{1}{produces} \\ $$$${a}\:{prime}\:{number}\:{when}\:\:{n}\:\:{is}\:{a}\: \\ $$$${prime}\:{number} \\ $$
Commented by mr W last updated on 30/Jan/22
n≠prime ⇒ 2^n −1≠prime  but n=prime ⇏ 2^n −1=prime
$${n}\neq{prime}\:\Rightarrow\:\mathrm{2}^{{n}} −\mathrm{1}\neq{prime} \\ $$$${but}\:{n}={prime}\:\nRightarrow\:\mathrm{2}^{{n}} −\mathrm{1}={prime} \\ $$
Commented by mr W last updated on 30/Jan/22
primes of type 2^n −1 with n=prime  are called Mersene primes. it doesn′t  mean that 2^n −1 is always  prime for   any prime n. 2^n −1 is prime only for  some primes n. the largest known n   is 82 589 933 which was found in 2018.
$${primes}\:{of}\:{type}\:\mathrm{2}^{{n}} −\mathrm{1}\:{with}\:{n}={prime} \\ $$$${are}\:{called}\:{Mersene}\:{primes}.\:{it}\:{doesn}'{t} \\ $$$${mean}\:{that}\:\mathrm{2}^{{n}} −\mathrm{1}\:{is}\:{always}\:\:{prime}\:{for}\: \\ $$$${any}\:{prime}\:{n}.\:\mathrm{2}^{{n}} −\mathrm{1}\:{is}\:{prime}\:{only}\:{for} \\ $$$${some}\:{primes}\:{n}.\:{the}\:{largest}\:{known}\:{n}\: \\ $$$${is}\:\mathrm{82}\:\mathrm{589}\:\mathrm{933}\:{which}\:{was}\:{found}\:{in}\:\mathrm{2018}. \\ $$
Answered by JDamian last updated on 29/Jan/22
nobody  2^(11) −1=2047=23×89
$$\boldsymbol{{nobody}} \\ $$$$\mathrm{2}^{\mathrm{11}} −\mathrm{1}=\mathrm{2047}=\mathrm{23}×\mathrm{89} \\ $$
Commented by mr W last updated on 30/Jan/22
more counterexamples:  2^(23) −1=8388607=47×178481  2^(29) −1=536870911=233×1103×2089  2^(37) −1=137438953471=223×616318177
$${more}\:{counterexamples}: \\ $$$$\mathrm{2}^{\mathrm{23}} −\mathrm{1}=\mathrm{8388607}=\mathrm{47}×\mathrm{178481} \\ $$$$\mathrm{2}^{\mathrm{29}} −\mathrm{1}=\mathrm{536870911}=\mathrm{233}×\mathrm{1103}×\mathrm{2089} \\ $$$$\mathrm{2}^{\mathrm{37}} −\mathrm{1}=\mathrm{137438953471}=\mathrm{223}×\mathrm{616318177} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *