Menu Close

lim-x-x-5-1-x-1-




Question Number 99947 by bemath last updated on 24/Jun/20
lim_(x→∞)  x(5^(1/x) −1) =?
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{x}\left(\mathrm{5}^{\frac{\mathrm{1}}{{x}}} −\mathrm{1}\right)\:=? \\ $$
Commented by bobhans last updated on 24/Jun/20
lim_(x→∞)  ((5^(1/x) −1)/(1/x)) = lim_(t→0)  ((5^t −1)/t) = lim_(g→0)  ((5^t  ln(5))/1) = ln(5)
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{x}}} −\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{x}}}\:=\:\underset{\mathrm{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{5}^{\mathrm{t}} −\mathrm{1}}{\mathrm{t}}\:=\:\underset{\mathrm{g}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{5}^{\mathrm{t}} \:\mathrm{ln}\left(\mathrm{5}\right)}{\mathrm{1}}\:=\:\mathrm{ln}\left(\mathrm{5}\right) \\ $$
Commented by Dwaipayan Shikari last updated on 24/Jun/20
lim_(x→∞) ((5^(1/x) −1)/(1/x))=log5
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{5}^{\frac{\mathrm{1}}{{x}}} −\mathrm{1}}{\frac{\mathrm{1}}{{x}}}={log}\mathrm{5} \\ $$
Answered by mathmax by abdo last updated on 24/Jun/20
f(x) =x(5^(1/x) −1) ⇒f(x) =x{ e^((1/x)ln5) −1}  ∼x{1+((ln5)/x)+((ln^2 5)/(2x^2 ))   −1}  ⇒f(x)∼ln5 +((ln^2 5)/(2x)) ⇒lim_(x→∞) f(x) =ln5
$$\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{x}\left(\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{x}}} −\mathrm{1}\right)\:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{x}\left\{\:\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{x}}\mathrm{ln5}} −\mathrm{1}\right\}\:\:\sim\mathrm{x}\left\{\mathrm{1}+\frac{\mathrm{ln5}}{\mathrm{x}}+\frac{\mathrm{ln}^{\mathrm{2}} \mathrm{5}}{\mathrm{2x}^{\mathrm{2}} }\:\:\:−\mathrm{1}\right\} \\ $$$$\Rightarrow\mathrm{f}\left(\mathrm{x}\right)\sim\mathrm{ln5}\:+\frac{\mathrm{ln}^{\mathrm{2}} \mathrm{5}}{\mathrm{2x}}\:\Rightarrow\mathrm{lim}_{\mathrm{x}\rightarrow\infty} \mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{ln5} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *