Menu Close

In-a-cube-ABCD-EFGH-with-a-side-length-of-4-cm-Point-Q-is-the-middle-of-line-AE-and-point-P-lies-on-the-extension-of-line-AB-so-that-BP-AB-1-2-If-is-the-angle-between-the-QG-line-and-the-PQH




Question Number 134428 by liberty last updated on 03/Mar/21
In a cube ABCD.EFGH with a  side length of 4 cm. Point Q is the  middle of line AE and point P  lies on the extension of line AB  so that BP : AB = 1 : 2. If θ is the  angle between the QG line and  the PQH plane , then sin θ =?
InacubeABCD.EFGHwithasidelengthof4cm.PointQisthemiddleoflineAEandpointPliesontheextensionoflineABsothatBP:AB=1:2.IfθistheanglebetweentheQGlineandthePQHplane,thensinθ=?
Answered by EDWIN88 last updated on 03/Mar/21
let Q(4,0,2) , P(4,6,0) and H(0,0,4)  n^→  = QH × QP =  determinant (((−4     0        2)),((   0      6     −2)))= −12i^� −8j^� −24k^�   Let QX=(x−4,y,z−2) and QX ⊥n^→   we get the equation of plane PQH is  ⇒ −12(x−4)−8y−24(z−2)=0  ⇒−12x−8y−24z+96 = 0 or   ⇒3x+2y+6z−24 = 0  Let d be a distance a point G(0,4,4)to PQH plane  then we get d = ((∣8+24−24∣)/( (√(9+4+36)))) = (8/7)  so sin θ = (d/(∣QG∣)) = ((8/7)/( (√(16+16+4)))) = (8/(7×6))   sin θ = (4/(21)) .
letQ(4,0,2),P(4,6,0)andH(0,0,4)n=QH×QP=|402062|=12i^8j^24k^LetQX=(x4,y,z2)andQXnwegettheequationofplanePQHis12(x4)8y24(z2)=012x8y24z+96=0or3x+2y+6z24=0LetdbeadistanceapointG(0,4,4)toPQHplanethenwegetd=8+24249+4+36=87sosinθ=dQG=8716+16+4=87×6sinθ=421.
Answered by mr W last updated on 03/Mar/21
eqn. of PQH:  (x/4)−(y/6)+(z/2)=1  n=((1/4),−(1/6),(1/2))  GQ=(−4,−4,2)  sin θ=cos (90−θ)=((n∙GQ)/(∣n∣∣GQ∣))  =((−4×(1/4)−4×(−(1/6))+2×(1/2))/( (√(((1/4^2 )+(1/8^2 )+(1/2^2 ))(4^2 +4^2 +2^2 )))))=(4/(21))
eqn.ofPQH:x4y6+z2=1\boldsymboln=(14,16,12)\boldsymbolGQ=(4,4,2)sinθ=cos(90θ)=\boldsymboln\boldsymbolGQ\boldsymboln∣∣\boldsymbolGQ=4×144×(16)+2×12(142+182+122)(42+42+22)=421

Leave a Reply

Your email address will not be published. Required fields are marked *