Question Number 134435 by mnjuly1970 last updated on 03/Mar/21
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:….\mathscr{A}{dvanced}\:\:{calculus}…. \\ $$$$\:\:\:\:{prove}\:{that}:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{P}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{\mathrm{1}}{{n}^{\mathrm{4}} }\right)=\frac{{sin}\left(\pi\right).{sinh}\left(\pi\right)}{\pi^{\:\mathrm{2}} }\:..\checkmark \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:………….\:……….. \\ $$
Answered by Dwaipayan Shikari last updated on 03/Mar/21
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)=\frac{{sin}\pi}{\pi\:}.\frac{{sinh}\left(\pi\right)}{\pi}=\frac{{sin}\left(\pi\right){sinh}\left(\pi\right)}{\pi^{\mathrm{2}} }=\mathrm{0} \\ $$
Commented by mnjuly1970 last updated on 03/Mar/21
$${tayeballah}\:{sir}\:{payan}… \\ $$
Answered by mnjuly1970 last updated on 03/Mar/21
$$\:\:\:\:\frac{{sin}\left(\pi{x}\right)}{\pi{x}}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{n}^{\mathrm{2}} }\right) \\ $$$$\:\:\:\:{x}:=\:\mathrm{1} \\ $$$$\:\:\:\:\:\:\therefore\:\:\frac{{sin}\left(\pi\right)}{\pi}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)…..\left(\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:{x}:\:={i} \\ $$$$\:\:\:\:\:\:\frac{{sin}\left(\pi{i}\right)}{\pi{i}}\:\overset{\left({i}^{\mathrm{2}} =−\mathrm{1}\right)} {=}\underset{{n}=\mathrm{1}} {\prod}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)….\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\:{sin}\left(\pi{i}\right)=\frac{{e}^{−\pi} −{e}^{\pi} }{\mathrm{2}{i}}\:\left(\ast\right)……..\left(\mathrm{2}^{\ast} \right) \\ $$$$\:\:\:\:\:\:\:\:\left(\mathrm{2}\right)\:{and}\:\left(\ast\right)\::\Rightarrow\:\frac{{sinh}\left(\pi\right)}{\pi}\:=\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)\:….\mathrm{2}^{\ast} \\ $$$$\:\:\:\:\left(\mathrm{1}\right)×\left(\mathrm{2}\right)^{\ast} =\frac{{sin}\left(\pi\right).{sinh}\left(\pi\right)}{\pi}=\underset{{n}=\mathrm{2}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{\mathrm{1}}{{n}^{\mathrm{4}} }\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\: \\ $$