Menu Close

C-0-pi-dx-2-cos-2x-




Question Number 165955 by cortano1 last updated on 10/Feb/22
    C = ∫_0 ^( π) (dx/(2+cos 2x)) =?
$$\:\:\:\:\mathrm{C}\:=\:\int_{\mathrm{0}} ^{\:\pi} \frac{\mathrm{dx}}{\mathrm{2}+\mathrm{cos}\:\mathrm{2x}}\:=? \\ $$
Answered by MJS_new last updated on 10/Feb/22
∫_0 ^π (dx/(2+cos 2x))=2∫_0 ^(π/2) (dx/(2+cos 2x))  ∫(dx/(2+cos 2x))=       [t=tan x → dx=(dt/(t^2 +1))]  =∫(dt/(t^2 +3))=((√3)/3)arctan (((√3)t)/3) =((√3)/3)arctan (((√3)tan x)/3) +C  ⇒  ∫_0 ^π (dx/(2+cos 2x))=(((√3)π)/3)
$$\underset{\mathrm{0}} {\overset{\pi} {\int}}\frac{{dx}}{\mathrm{2}+\mathrm{cos}\:\mathrm{2}{x}}=\mathrm{2}\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\frac{{dx}}{\mathrm{2}+\mathrm{cos}\:\mathrm{2}{x}} \\ $$$$\int\frac{{dx}}{\mathrm{2}+\mathrm{cos}\:\mathrm{2}{x}}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{tan}\:{x}\:\rightarrow\:{dx}=\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{1}}\right] \\ $$$$=\int\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{3}}=\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{3}}{t}}{\mathrm{3}}\:=\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{3}}\mathrm{tan}\:{x}}{\mathrm{3}}\:+{C} \\ $$$$\Rightarrow \\ $$$$\underset{\mathrm{0}} {\overset{\pi} {\int}}\frac{{dx}}{\mathrm{2}+\mathrm{cos}\:\mathrm{2}{x}}=\frac{\sqrt{\mathrm{3}}\pi}{\mathrm{3}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *