Question Number 35054 by math khazana by abdo last updated on 14/May/18
$${find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\:\frac{{xdx}}{\mathrm{2}\:+{cosx}} \\ $$
Commented by prof Abdo imad last updated on 16/May/18
$${changement}\:\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}\:{give} \\ $$$${I}\:\:=\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}\:−\mathrm{1}} \:\:\:\:\frac{\mathrm{2}{arctant}}{\mathrm{2}+\:\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}\:\:\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$=\:\mathrm{4}\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}\:−\mathrm{1}} \:\:\:\frac{{arctant}}{\mathrm{2}\:+\mathrm{2}{t}^{\mathrm{2}} \:+\mathrm{1}−{t}^{\mathrm{2}} }{dt} \\ $$$$=\mathrm{4}\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}\:−\mathrm{1}} \:\:\:\:\:\frac{{arctan}\left({t}\right)}{\mathrm{3}+{t}^{\mathrm{2}} }\:{dt} \\ $$$$=_{{t}=\sqrt{\mathrm{3}}{u}} \:\mathrm{4}\:\:\int_{\mathrm{0}} ^{\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\mathrm{3}}} \:\:\:\:\:\frac{{arctan}\left(\sqrt{\mathrm{3}}{u}\right)}{\mathrm{3}\left(\mathrm{1}+{u}^{\mathrm{2}} \right)}\:\sqrt{\mathrm{3}}\:{du} \\ $$$$=\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{3}}\:\int_{\mathrm{0}} ^{\frac{\sqrt{\mathrm{2}}\:−\mathrm{1}}{\mathrm{3}}} \:\:\:\:\:\:\frac{{arctan}\left(\sqrt{\mathrm{3}}{u}\right)}{\mathrm{1}+{u}^{\mathrm{2}} }{du}\:\:{by}\:{parts} \\ $$$$\int_{\mathrm{0}} ^{\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\mathrm{3}}} \:\:\:\:\frac{{arctan}\left(\sqrt{\mathrm{3}}{u}\right)}{\mathrm{1}+{u}^{\mathrm{2}} }{du} \\ $$$$=\:\left[{arctan}\left({u}\right){arctan}\left(\sqrt{\mathrm{3}}{u}\right)\right]_{\mathrm{0}} ^{\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\mathrm{3}}} \:−\sqrt{\mathrm{3}}\int_{\mathrm{0}} ^{\frac{\sqrt{\mathrm{2}}\:−\mathrm{1}}{\mathrm{3}}} \:\frac{{arctan}\left({u}\right)}{\mathrm{1}+\mathrm{3}{u}^{\mathrm{2}} }{du} \\ $$$$={arctan}\left(\frac{\sqrt{\mathrm{2}}\:−\mathrm{1}}{\mathrm{3}}\right){arctan}\left(\sqrt{\mathrm{3}}\frac{\sqrt{\mathrm{2}}\:−\mathrm{1}}{\mathrm{3}}\right) \\ $$$$−\sqrt{\mathrm{3}}\:\int_{\mathrm{0}} ^{\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\mathrm{3}}} \:\:\:\:\:\frac{{arctan}\left({u}\right)}{\mathrm{1}+\mathrm{3}{u}^{\mathrm{2}} }\:{du}….{be}\:{continued}… \\ $$$$ \\ $$