Menu Close

find-0-1-2x-1-x-2-6-dx-




Question Number 35429 by abdo.msup.com last updated on 18/May/18
find  ∫_0 ^1     ((2x−1)/( (√(x^2   +6)))) dx
$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{\mathrm{2}{x}−\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} \:\:+\mathrm{6}}}\:{dx} \\ $$
Commented by prof Abdo imad last updated on 19/May/18
let put I = ∫_0 ^1   ((2x−1)/( (√(x^2  +6)))) .changement x=(√6)sht  give I = ∫_0 ^(argsh((1/( (√6)))))      ((2(√6) sht −1)/( (√6)ch(t))) (√6) cht dt  = ∫_0 ^(ln( (1/( (√6))) +(√(1+(1/6))))  (2(√6) sh(t)−1)dt  =2(√6) [ ch(t)]_0 ^(ln( (1/( (√6))) +(√(7/6))))  −ln((1/( (√6))) +((√7)/( (√6))))  we have ch(t) =((e^t  +e^(−t) )/2) ⇒   ch{ ln( (1/( (√6))) +((√7)/( (√6))))} = ((((1/( (√6))) +((√7)/( (√6)))) +((1/( (√6)))+((√7)/( (√6))))^(−1) )/2) ⇒  I = 2(√6){  ((((1/( (√6)))+((√7)/( (√6)))) +((1/( (√6))) +((√7)/( (√6))))^(−1) )/2) −1}  −ln((1/( (√6))) +((√7)/( (√6))))
$${let}\:{put}\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{2}{x}−\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} \:+\mathrm{6}}}\:.{changement}\:{x}=\sqrt{\mathrm{6}}{sht} \\ $$$${give}\:{I}\:=\:\int_{\mathrm{0}} ^{{argsh}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}\right)} \:\:\:\:\:\frac{\mathrm{2}\sqrt{\mathrm{6}}\:{sht}\:−\mathrm{1}}{\:\sqrt{\mathrm{6}}{ch}\left({t}\right)}\:\sqrt{\mathrm{6}}\:{cht}\:{dt} \\ $$$$=\:\int_{\mathrm{0}} ^{{ln}\left(\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}\:+\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{6}}}\right.} \:\left(\mathrm{2}\sqrt{\mathrm{6}}\:{sh}\left({t}\right)−\mathrm{1}\right){dt} \\ $$$$=\mathrm{2}\sqrt{\mathrm{6}}\:\left[\:{ch}\left({t}\right)\right]_{\mathrm{0}} ^{{ln}\left(\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}\:+\sqrt{\frac{\mathrm{7}}{\mathrm{6}}}\right)} \:−{ln}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}\:+\frac{\sqrt{\mathrm{7}}}{\:\sqrt{\mathrm{6}}}\right) \\ $$$${we}\:{have}\:{ch}\left({t}\right)\:=\frac{{e}^{{t}} \:+{e}^{−{t}} }{\mathrm{2}}\:\Rightarrow\: \\ $$$${ch}\left\{\:{ln}\left(\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}\:+\frac{\sqrt{\mathrm{7}}}{\:\sqrt{\mathrm{6}}}\right)\right\}\:=\:\frac{\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}\:+\frac{\sqrt{\mathrm{7}}}{\:\sqrt{\mathrm{6}}}\right)\:+\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}+\frac{\sqrt{\mathrm{7}}}{\:\sqrt{\mathrm{6}}}\right)^{−\mathrm{1}} }{\mathrm{2}}\:\Rightarrow \\ $$$${I}\:=\:\mathrm{2}\sqrt{\mathrm{6}}\left\{\:\:\frac{\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}+\frac{\sqrt{\mathrm{7}}}{\:\sqrt{\mathrm{6}}}\right)\:+\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}\:+\frac{\sqrt{\mathrm{7}}}{\:\sqrt{\mathrm{6}}}\right)^{−\mathrm{1}} }{\mathrm{2}}\:−\mathrm{1}\right\} \\ $$$$−{ln}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}\:+\frac{\sqrt{\mathrm{7}}}{\:\sqrt{\mathrm{6}}}\right) \\ $$
Answered by ajfour last updated on 19/May/18
I=∫_0 ^(  1) ((2xdx)/( (√(x^2 +6))))−∫_0 ^(  1) (dx/( (√(x^2 +((√6))^2 ))))    =2(√(x^2 +6))∣_0 ^1 −ln ∣x+(√(x^2 +6))∣_0 ^1   ⇒ I=2((√7)−(√6))−ln (((1+(√7))/( (√6))))
$${I}=\int_{\mathrm{0}} ^{\:\:\mathrm{1}} \frac{\mathrm{2}{xdx}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{6}}}−\int_{\mathrm{0}} ^{\:\:\mathrm{1}} \frac{{dx}}{\:\sqrt{{x}^{\mathrm{2}} +\left(\sqrt{\mathrm{6}}\right)^{\mathrm{2}} }} \\ $$$$\:\:=\mathrm{2}\sqrt{{x}^{\mathrm{2}} +\mathrm{6}}\mid_{\mathrm{0}} ^{\mathrm{1}} −\mathrm{ln}\:\mid{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{6}}\mid_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\Rightarrow\:{I}=\mathrm{2}\left(\sqrt{\mathrm{7}}−\sqrt{\mathrm{6}}\right)−\mathrm{ln}\:\left(\frac{\mathrm{1}+\sqrt{\mathrm{7}}}{\:\sqrt{\mathrm{6}}}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *