Menu Close

let-f-t-0-e-tx-2-arctan-x-2-x-2-dx-with-t-gt-0-1-study-the-existencte-of-f-t-2-calculate-f-t-3-find-a-simple-form-of-f-t-




Question Number 35678 by abdo imad last updated on 21/May/18
let f(t) =∫_0 ^∞   ((e^(−tx^2 )  arctan(x^2 ))/x^2 )dx with t>0  1) study the existencte of f(t)  2)calculate f^′ (t)  3)find a simple form of f(t).
$${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{tx}^{\mathrm{2}} } \:{arctan}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }{dx}\:{with}\:{t}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{study}\:{the}\:{existencte}\:{of}\:{f}\left({t}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:{f}^{'} \left({t}\right) \\ $$$$\left.\mathrm{3}\right){find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({t}\right). \\ $$
Commented by prof Abdo imad last updated on 23/May/18
1) f(t) = ∫_0 ^1   ((e^(−tx^2 )  arctan(x^2 ))/x^2 )dx +∫_1 ^(+∞)  ((e^(−tx^2 )  arctan(x^2 ))/x^2 )dx  = I +J but we have  ((e^(−tx^2 )  arctan(x^2 ))/x^2 )∼ e^(−tx^2 )  ⇒  lim_(x→0)  ((e^(−tx^2 )  arctan(x^2 ))/x^2 ) = 1 so I converges  also we have lim_(x→+∞)   x^2   ((e^(−tx^2 ) arctan(x^2 ))/x^2 ) =0  the comvergence of J is assured so f(t)?exists  for t>0  2) f^′ (t) = ∫_0 ^∞    (∂/∂t){  ((e^(−tx^2 )  arctan(x^2 ))/x^2 )}dx  =−∫_0 ^∞    e^(−tx^2 )  arctan(x^2 )dx .
$$\left.\mathrm{1}\right)\:{f}\left({t}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{e}^{−{tx}^{\mathrm{2}} } \:{arctan}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }{dx}\:+\int_{\mathrm{1}} ^{+\infty} \:\frac{{e}^{−{tx}^{\mathrm{2}} } \:{arctan}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }{dx} \\ $$$$=\:{I}\:+{J}\:{but}\:{we}\:{have}\:\:\frac{{e}^{−{tx}^{\mathrm{2}} } \:{arctan}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }\sim\:{e}^{−{tx}^{\mathrm{2}} } \:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \:\frac{{e}^{−{tx}^{\mathrm{2}} } \:{arctan}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }\:=\:\mathrm{1}\:{so}\:{I}\:{converges} \\ $$$${also}\:{we}\:{have}\:{lim}_{{x}\rightarrow+\infty} \:\:{x}^{\mathrm{2}} \:\:\frac{{e}^{−{tx}^{\mathrm{2}} } {arctan}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }\:=\mathrm{0} \\ $$$${the}\:{comvergence}\:{of}\:{J}\:{is}\:{assured}\:{so}\:{f}\left({t}\right)?{exists} \\ $$$${for}\:{t}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{f}^{'} \left({t}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\partial}{\partial{t}}\left\{\:\:\frac{{e}^{−{tx}^{\mathrm{2}} } \:{arctan}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }\right\}{dx} \\ $$$$=−\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{−{tx}^{\mathrm{2}} } \:{arctan}\left({x}^{\mathrm{2}} \right){dx}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *