Menu Close

The-speed-of-a-train-is-reduced-from-80km-hr-to-40km-hr-in-a-distance-of-500m-on-applying-the-brakes-i-How-much-further-will-the-train-travels-before-coming-to-rest-ii-Assuming-the-retar




Question Number 134530 by I want to learn more last updated on 04/Mar/21
The speed of a train is reduced from  80km/hr  to  40km/hr  in a  distance of  500m  on applying the brakes.  (i)  How much further will the train travels before coming to rest.  (ii)  Assuming the retardation remains constant, how long will it  take to bring the train to rest after the application of the brakes?
$$\mathrm{The}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{a}\:\mathrm{train}\:\mathrm{is}\:\mathrm{reduced}\:\mathrm{from}\:\:\mathrm{80km}/\mathrm{hr}\:\:\mathrm{to}\:\:\mathrm{40km}/\mathrm{hr}\:\:\mathrm{in}\:\mathrm{a} \\ $$$$\mathrm{distance}\:\mathrm{of}\:\:\mathrm{500m}\:\:\mathrm{on}\:\mathrm{applying}\:\mathrm{the}\:\mathrm{brakes}. \\ $$$$\left(\mathrm{i}\right)\:\:\mathrm{How}\:\mathrm{much}\:\mathrm{further}\:\mathrm{will}\:\mathrm{the}\:\mathrm{train}\:\mathrm{travels}\:\mathrm{before}\:\mathrm{coming}\:\mathrm{to}\:\mathrm{rest}. \\ $$$$\left(\mathrm{ii}\right)\:\:\mathrm{Assuming}\:\mathrm{the}\:\mathrm{retardation}\:\mathrm{remains}\:\mathrm{constant},\:\mathrm{how}\:\mathrm{long}\:\mathrm{will}\:\mathrm{it} \\ $$$$\mathrm{take}\:\mathrm{to}\:\mathrm{bring}\:\mathrm{the}\:\mathrm{train}\:\mathrm{to}\:\mathrm{rest}\:\mathrm{after}\:\mathrm{the}\:\mathrm{application}\:\mathrm{of}\:\mathrm{the}\:\mathrm{brakes}? \\ $$
Answered by mr W last updated on 04/Mar/21
80 km/h=((80000)/(60×60))=((200)/9) m/s  40 km/h=((40000)/(60×60))=((100)/9) m/s  a=((v_2 ^2 −v_1 ^2 )/(2s))=(((((100)/9))^2 −(((200)/9))^2 )/(2×500))=−((10)/(27)) m/s^2   (i):  s=((v_2 ^2 −v_1 ^2 )/(2a))=((0−(((100)/9))^2 )/(2×(−((10)/(27)))))=((500)/3)=166.7 m  (ii):  t=((v_2 −v_1 )/a)=((0−((200)/9))/(−((10)/(27))))=60 s
$$\mathrm{80}\:{km}/{h}=\frac{\mathrm{80000}}{\mathrm{60}×\mathrm{60}}=\frac{\mathrm{200}}{\mathrm{9}}\:{m}/{s} \\ $$$$\mathrm{40}\:{km}/{h}=\frac{\mathrm{40000}}{\mathrm{60}×\mathrm{60}}=\frac{\mathrm{100}}{\mathrm{9}}\:{m}/{s} \\ $$$${a}=\frac{{v}_{\mathrm{2}} ^{\mathrm{2}} −{v}_{\mathrm{1}} ^{\mathrm{2}} }{\mathrm{2}{s}}=\frac{\left(\frac{\mathrm{100}}{\mathrm{9}}\right)^{\mathrm{2}} −\left(\frac{\mathrm{200}}{\mathrm{9}}\right)^{\mathrm{2}} }{\mathrm{2}×\mathrm{500}}=−\frac{\mathrm{10}}{\mathrm{27}}\:{m}/{s}^{\mathrm{2}} \\ $$$$\left({i}\right): \\ $$$${s}=\frac{{v}_{\mathrm{2}} ^{\mathrm{2}} −{v}_{\mathrm{1}} ^{\mathrm{2}} }{\mathrm{2}{a}}=\frac{\mathrm{0}−\left(\frac{\mathrm{100}}{\mathrm{9}}\right)^{\mathrm{2}} }{\mathrm{2}×\left(−\frac{\mathrm{10}}{\mathrm{27}}\right)}=\frac{\mathrm{500}}{\mathrm{3}}=\mathrm{166}.\mathrm{7}\:{m} \\ $$$$\left({ii}\right): \\ $$$${t}=\frac{{v}_{\mathrm{2}} −{v}_{\mathrm{1}} }{{a}}=\frac{\mathrm{0}−\frac{\mathrm{200}}{\mathrm{9}}}{−\frac{\mathrm{10}}{\mathrm{27}}}=\mathrm{60}\:{s} \\ $$
Commented by I want to learn more last updated on 04/Mar/21
Thanks sir, i really appreciate.
$$\mathrm{Thanks}\:\mathrm{sir},\:\mathrm{i}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$
Commented by I want to learn more last updated on 07/Mar/21
Sir please help me with  Q134704
$$\mathrm{Sir}\:\mathrm{please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{with}\:\:\mathrm{Q134704} \\ $$
Commented by otchereabdullai@gmail.com last updated on 12/Mar/21
fantastic
$$\mathrm{fantastic} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *