Menu Close

Evaluate-0-x-1-2020-x-2-2022-dx-




Question Number 166756 by HongKing last updated on 27/Feb/22
Evaluate:  ∫_0 ^( ∞)  (((x + 1)^(2020) )/((x + 2)^(2022) )) dx = ?
$$\mathrm{Evaluate}: \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \:\frac{\left(\mathrm{x}\:+\:\mathrm{1}\right)^{\mathrm{2020}} }{\left(\mathrm{x}\:+\:\mathrm{2}\right)^{\mathrm{2022}} }\:\mathrm{dx}\:=\:? \\ $$
Answered by Mathspace last updated on 27/Feb/22
x+2=t ⇒I=∫_2 ^∞ (((t−1)^(2020) )/t^(2022) )dt  =∫_2 ^∞  ((Σ_(k=0) ^(2020) C_(2020) ^k t^k (−1)^(2020−k) )/t^(2022) )dt  =Σ_(k=0) ^(2020) (−1)^k  C_(2020) ^k  t^(k−2022) dt  =Σ_(k=0) ^(2020) (−1)^k  C_(2020) ^k [(1/(k−2021))t^(k−2022) ]_2 ^∞   =−Σ_(k=0) ^(2020) (((−1)^k C_(2020) ^k )/(k−2021)) 2^(k−2022)
$${x}+\mathrm{2}={t}\:\Rightarrow{I}=\int_{\mathrm{2}} ^{\infty} \frac{\left({t}−\mathrm{1}\right)^{\mathrm{2020}} }{{t}^{\mathrm{2022}} }{dt} \\ $$$$=\int_{\mathrm{2}} ^{\infty} \:\frac{\sum_{{k}=\mathrm{0}} ^{\mathrm{2020}} {C}_{\mathrm{2020}} ^{{k}} {t}^{{k}} \left(−\mathrm{1}\right)^{\mathrm{2020}−{k}} }{{t}^{\mathrm{2022}} }{dt} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{\mathrm{2020}} \left(−\mathrm{1}\right)^{{k}} \:{C}_{\mathrm{2020}} ^{{k}} \:{t}^{{k}−\mathrm{2022}} {dt} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{\mathrm{2020}} \left(−\mathrm{1}\right)^{{k}} \:{C}_{\mathrm{2020}} ^{{k}} \left[\frac{\mathrm{1}}{{k}−\mathrm{2021}}{t}^{{k}−\mathrm{2022}} \right]_{\mathrm{2}} ^{\infty} \\ $$$$=−\sum_{{k}=\mathrm{0}} ^{\mathrm{2020}} \frac{\left(−\mathrm{1}\right)^{{k}} {C}_{\mathrm{2020}} ^{{k}} }{{k}−\mathrm{2021}}\:\mathrm{2}^{{k}−\mathrm{2022}} \\ $$
Answered by mathsmine last updated on 27/Feb/22
=∫_0 ^∞ (((x+1)/(x+2)))^(2020) .((1/(x+2)))^2 dx  u=((x+1)/(x+2))=1−(1/((x+2)))⇒du=(dx/((x+2)^2 ))  =∫_(1/2) ^1 u^(2020) du=(1/(2021))(1−(1/2^(2021) ))
$$=\int_{\mathrm{0}} ^{\infty} \left(\frac{{x}+\mathrm{1}}{{x}+\mathrm{2}}\right)^{\mathrm{2020}} .\left(\frac{\mathrm{1}}{{x}+\mathrm{2}}\right)^{\mathrm{2}} {dx} \\ $$$${u}=\frac{{x}+\mathrm{1}}{{x}+\mathrm{2}}=\mathrm{1}−\frac{\mathrm{1}}{\left({x}+\mathrm{2}\right)}\Rightarrow{du}=\frac{{dx}}{\left({x}+\mathrm{2}\right)^{\mathrm{2}} } \\ $$$$=\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} {u}^{\mathrm{2020}} {du}=\frac{\mathrm{1}}{\mathrm{2021}}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2021}} }\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *